Статикой называется раздел механики, в котором излагается общее учение о силах и изучаются условия равновесия материальных тел, находящихся под действием сил.

Под равновесием будем понимать состояние покоя тела по отношению к другим телам, например по отношению к Земле. Условия равновесия тела существенно зависят от того, является ли это тело твердым, жидким или газообразным. Равновесие жидких и газообразных тел изучается в курсах гидростатики или аэростатики. В общем курсе механики рассматриваются обычно только задачи о равновесии твердых тел.

Все встречающиеся в природе твердые тела под влиянием внешних воздействий в той или иной мере изменяют свою форму (деформируются). Величины этих деформаций зависят от материала тел, их геометрической формы и размеров и от действующих нагрузок. Для обеспечения прочности различных инженерных сооружений и конструкций материал и размеры их частей подбирают так, чтобы деформации при действующих нагрузках были достаточно малы. Вследствие этого при изучении условий равновесия вполне допустимо пренебрегать малыми деформациями соответствующих твердых тел и рассматривать их как недеформируемые или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между каждыми двумя точками которого всегда остается постоянным. В дальнейшем при решении задач статики все тела рассматриваются как абсолютно твердые, хотя часто для краткости их называют просто твердыми телами.

Состояние равновесия или движения данного тела зависит от характера его механических Взаимодействий с другими телами, т. е. от тех давлений, притяжений или отталкиваний, которые тело испытывает в результате этих взаимодействий. Величина, являющаяся основной мерой механического взаимодействия материальных тел, называется в механике силой.

Рассматриваемые в механике величины можно разделить на скалярные, т. е. такие, которые полностью характеризуются их числовым значением, и векторные, т. е. такие, которые помимо числового значения характеризуются еще и направлением в пространстве.

Сила - величина векторная. Ее действие на тело определяется: 1) числовым значением или модулем силы, 2) направлением силы, 3) точкой приложения силы.

Модуль силы находят путем ее сравнения с силой, принятой за единицу. Основной единицей измерения силы в Международной системе единиц (СИ), которой мы будем пользоваться (подробнее см. § 75), является 1 ньютон (1 Н); применяется и более крупная единица 1 килоньютон . Для статического измерения силы служат известные из физики приборы, называемые динамометрами.

Силу, как и все другие векторные величины, будем обозначать буквой с чертой над нею (например, F), а модуль силы - символом или той же буквой, но без черты над нею (F). Графически сила, как и другие векторы, изображается направленным отрезком (рис. 1). Длина этого отрезка выражает в выбранном масштабе модуль силы, направление отрезка соответствует направлению силы, точка А на рис. 1 является точкой приложения силы (силу можно изобразить и так, что точкой приложения будет конец силы, как?? на рис. А, в). Прямая DE, вдоль которой направлена сила, называется линией действия силы. Условимся еще о следующих определениях.

1. Системой сил будем называть совокупность сил, действующих на рассматриваемое тело (или тела). Если линии действия всех сил лежат в одной плоскости, система сил называется плоской, а если эти линии действия не лежат в одной плоскости, - пространственной. Кроме того, силы, линии действия которых пересекаются в одной точке, называются сходящимися, а силы, линии действия которых параллельны друг другу, - параллельными.

2. Тело, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.

3. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.

4. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.

5. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

6. Силы, действующие на данное тело (или систему тел), можно разделить на внешние и внутренние. Внешними называются силы, которые действуют на это тело (или на тела системы) со стороны других тел, а внутренними - силы, с которыми части данного тела (или тела данной системы) действуют друг на друга.

7. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.

Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые в механике рассматривают как сосредоточенные, представляют собой по существу равнодействующие некоторых систем распределенных сил.

В частности, рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собой равнодействующую сил тяжести, действующих на его частицы. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.

Задачами статики являются: 1) преобразование систем сил, действующих на твердое тело, в системы им эквивалентные, в частности приведение данной системы сил к простейшему виду; 2) определение условий равновесия систем сил, действующих на твердое тело.

Решать задачи статики можно или путем соответствующих геометрических построений (геометрический и графический методы), или с помощью численных расчетов (аналитический метод). В курсе будет главным образом применяться аналитический метод, однако следует иметь в виду, что наглядные геометрические построения играют при решении задач механики чрезвычайно важную роль.

Вторым понятием, которое тоже установил Эйлер, было понятие об абсолютно твердом теле. Оно было необходимым условием для возможности введения аксиомы, что две равные и противоположиные силы, имеющие одну линию действия, взаимно уравновешиваются, будучи приложены к одному твердому телу. Такие две силы растягивают или сжимают тело , к которому они приложены, и даже могут его разорвать, но если не нужно создавать особой механики для различного рода материалов (дерева, камня, металлов), то следует предположить, что на рассматриваемом теле уравновешиваются любые две равные и прямо противоположные силы.

Геометрическое определение абсолютно твердого тела требует неизменности расстояний между его точками; в статике существенной является именно возможность уравновешивания на нем двух равных и прямо противоположных сил; тогда всякое тело можно считать, абсолютно твердым, если действующие на него силы не превосходят некоторого предела. Получающиеся от действия сил деформации бывают настолько малыми, что можно пренебречь геометрическими изменениями размеров и формы тела, но физической стороной — существованием в данном теле различных усилий — при этом пренебрегать нельзя. Здесь вы можете найти , которая вам необходима.

Уже очень давно было отмечено, что результат действия сил на тело зависит не только от величины этой силы и веса тела, но и от сопротивления движения, в частности от силы трения. Первым обратившим внимание на эту силу трения был Леонардо да Винчи , считавший, что в случае движения по горизонтальной плоскости сила трения равняется 25% от веса движущегося тела. Дальнейшие исследования были проведены Амонтоном (1663—1705) и затем Кулоном (1736—1806), который вывел законы трения скольжения. Механика студентам изучает современные понятия относительно изложенного материала.

Нужно отметить, что величина силы трения определяется не из уравнений, а из неравенств; поэтому возможны случай, когда и положение равновесия и соответствующая величина силы трения остаются неопределенными и тоже будут зависеть от начальных условий загрузки. Задача на опытное определение коэффициентов трения различных тел, а также исследование его изменения в различных условия* относятся тоже к области индустриальной механики. Нельзя признать окончательно выясненным даже определение зависимости коэффициента трения от скорости движения тела.

В основном величина коэффициента трения уменьшается при увеличении скорости движения тела; например, для остановки поезда нельзя давать сразу тормоз до отказа, чтобы прекратить вращение колес, так чтобы их скорость скольжения равнялась скорости движения поезда; при постепенном торможении; уменьшающем скорость скольжения, поезд проходит до остановки значительно меньшее расстояние , чем при торможении до отказа. Статика абсолютно твердого тела не позволяет решить все задачи на равновесие.

Классическим примером является задача на определение опорных реакций стола на четырех ножках, стоящего на гладкой горизонтальной плоскости, под действием груза, лежащего на доске стола в какой-либо точке, отличной от ее середины. В геометрической статике имеется всего лишь три уравнения для определения четырех неизвестных. Недостающее уравнение можно получить, если рассматривать ножки стола как упругие стержни, могущие сжиматься под действием наложенного груза и опорных реакций ножек; так как величины деформаций ножек пропорциональны действующим силам (реакциям ножек), то, если найти соотношение между перемещениями концов всех четырех ножек, можно получить недостающее четвертое уравнение.

Предмет физики

1.1. Материя, как объект познания

Физика есть наука о наиболее общих свойствах и формах движения материи. Физические формы движения материи (механическая, тепловая, электромагнитная и др.) имеют место в «неживой» природе, но они же являются составляющими частями более сложных форм движения, относящихся к миру «живой» материи.

Материя – объективная реальность, которая дается человеку в его ощущениях, существуя независимо от его сознания и ощущений. Отдельные свойства материи могут копироваться, фотографироваться, измеряться органами чувств человека и специальными приборами, созданными им. Из этого следует, что материя познаваема.

Физика – наука, которая непрерывно развивается, как и всякая другая наука, т.к. чем шире круг познания, тем больше периметр границ с непознанным.

Связь с философией:

Академик С.И.Вавилов отметил в одной из своих статей: «…предельная общность значительной части содержания физики, ее факторов и законов искони сближала физику с философией… Иногда физические утверждения по своему характеру таковы, что их трудно отличить от философских утверждений, и физик обязан быть философом».

Справедливость этого высказывания подтверждают факты истории развития науки. Такие, например, как попытки изобрести вечный двигатель, неиссякаемые источники энергии, попытки найти мельчайшую частицу вещества. И таковой поначалу считали молекулу, затем атом, затем электрон.

И только вооруженный знанием философии естествоиспытатель знает, что не может быть вечного двигателя, что нет самой маленькой неделимой частицы вещества, как нет и самой крупной – вселенная бесконечна. Это трудно представить непосвященному человеку, но это так, и в этом сходятся физика и философия.

В настоящее время известны два вида существования материи : вещество и поле .

К первому виду материи – веществу – относятся, например, атомы, молекулы и все построенные из них тела.

Второй вид материи образует магнитные, электрические, гравитационные и другие поля.

И если вещество способно отражаться в органах ощущения человека, то поле мы не видим и не ощущаем. Это не значит, что поля нет. Человек может обнаружить наличие полей опосредовано. В том, что магнитное поле материально легко убедиться, посмотрев, например, на работу магнитных кранов, электрических машин. Можно взять два магнита и попробовать соединить их одноименными полюсами, и убедиться, что это невозможно. Вы не увидите никакого вещества между полюсами, но невидимые силы препятствуют соединению одноименных полюсов магнитов точно также, как притягивают одноименные полюса. Эти опыты убеждают: поле материально.

Различные виды материи могут превращаться друг в друга . Так, например, электрон и позитрон, представляющие собой вещество, могут превращаться в фотоны, т.е. в электромагнитное поле. Возможен и обратный процесс.

Материя находится в непрерывном движении. Нет движения – нет материи. Движение – неотъемлемое свойство материи , которое несотворимо и неуничтожимо, как и сама материя.

Материя существует и движется в пространстве и во времени , которые являются формами бытия материи.

1.2. Методы физического исследования

Французский материалист-просветитель Дени Дидро в работе «Мысли к объяснению природы» так характеризовал путь научного познания: «Мы располагаем тремя главными средствами исследования: наблюдением природы, размышлением и экспериментом .

Наблюдение собирает факты ; размышление их комбинирует ; опыт проверяет результат комбинаций . Необходимы прилежание для наблюдения природы, глубина для размышления иточность для опыта».

Физические законы устанавливаются на основе обобщения опытных фактов и выражают объективные закономерности , существующие в природе. Основными методами физического исследования являются

опыт,

гипотеза,

эксперимент,

теория .

Найденные законы обычно формулируются в виде количественных соотношений между различными физическими величинами.

Опыт или эксперимент является основным методом исследования в физике. Для объяснения экспериментальных данных привлекаются гипотезы.

Гипотеза – научное предположение, выдвигаемое для объяснения какого-либо факта или явления. После проверки и подтверждения гипотеза становится научной теорией или законом.

Физические законы устойчивые повторяющиеся объективные закономерности, существующие в природе.

Физическая теория представляет собой систему основных идей, обобщающих опытные данные и отражающих объективные закономерности природы.

Наука возникла в глубокой древности как попытка осмыслить окружающие явления, взаимосвязь природы и человека. Сначала она не разделялась на отдельные направления, как сейчас, а объединялась в одну общую науку – философию. Астрономия выделилась в отдельную дисциплину раньше физики и является наряду с математикой и механикой одной из древнейших наук. Позже наука о природе так же выделилась в самостоятельную дисциплину. Древнегреческий учёный и философ Аристотель назвал физикой одно из своих сочинений.

Одна из главных задач физики – объяснить строение окружающего нас мира и происходящие в нём процессы, понять природу наблюдаемых явлений. Другая важная задача – выявить и познать законы, которым подчиняется окружающий мир. Познавая мир, люди используют законы природы. Вся современная техника основана на применении законов, открытых учёными.

С изобретением в 1780-х гг. парового двигателя началась промышленная революция. Первый паровой двигатель изобрёл английский учёный Томас Ньюкомен в 1712 г. Паровая машина пригодная для использования в прмышленности, впервые создана в 1766 г. русским изобретателем Иваном Ползуновым (1728-1766).Шотландец Джеймс Уатт усовершенствовал конструкцию. Созданный им в 1782 г. двухтактный паровой двигатель приводил в движение машины и механизмы на фабриках.

Сила пара приводила в движение насосы, поезда, пароходы, прядильные станки и множество других машин. Мощным толчком для развития техники послужило создание английским физиком «гениальным самоучкой» Майклом Фарадеем в 1821 г. первого электродвигателя. Создание в 1876г. немецким инженером Николаусом Отто четырёхтактного двигателя внутреннего сгорания открыло эру автомобилестроения, сделало возможным существование и повсеместное использование автомобилей, тепловозов, судов и других технических объектов.

То, что раньше считалось фантастикой, сейчас становится реальной жизнью, которую мы уже не представляем без аудио- и видеотехники, персонального компьютера, сотового телефона и Интернета. Их возникновение обязано открытиям сделанным в различных областях физики.

Однако и развитие техники способствует прогрессу в науке. Создание электронного микроскопа позволило заглянуть внутрь вещества. Создание точных измерительных приборов сделало возможным более точный анализ результатов экспериментов. Огромный прорыв в области изучения космоса был связан именно с появлением новых современных приборов и технических устройств

Таким образом, физика как наука играет огромную роль в развитии цивилизации. Она перевернула самые фундаментальные представления людей – представления о пространстве, времени, устройстве Вселенной, позволив человечеству совершить качественный скачок в своём развитии. Успехи физики позволили сделать ряд фундаментальных открытий в других естественных науках, в частности, в биологии. Развитие физики в наибольшей степени обеспечивало бурный прогресс медицины.

С успехами физики связаны и надежды учёных на обеспечение человечества неиссякаемыми альтернативными источниками энергии, использование которых позволит решить многие серьёзные экологические проблемы. Современная физика призвана обеспечить понимание самых глубинных основ мироздания, появления и развития нашей Вселенной, будущего человеческой цивилизации.

История развития биофизики

Развитие и становление биофизики как пограничной науки проходило ряд стадий. Уже на начальных этапах биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики.

Проникновение и применение законов физики для описания различных закономерности живой природы встретило целый ряд трудностей.

Предметом биофизики является изучение физических и физико-химических процессов, лежащих в основе жизни. По природе объектов ис-следования, биофизика является типичной биологической наукой, а по методам изучения и анализа результатов исследования является своеобразным разделом физики. Биофизические методы созданы на основе физических и физико-химических методов изучения природы. В этих методах должны сочетаться трудно совместимые качества
1. Высокая чувствительность.
2. Большая точность.
Этим требованиям не удовлетворяютполностью никакие методы, однако, наиболее широкое применение получили для биофизических исследований следующие методы:
- оптические;
- радио спектроскопия
- ультразвуковая радиоскопия;
- электронно-парамагнитная резонанснаяспектроскопия (ЭПР);
- ядерная магнитная резонансная спектроскопия.
Необходимо отметить, что любые исследования требуют, чтобы регистрирующие приборы не вносили искажений в изучаемый процесс, однако, трудно сравнить какую-либо физическую систему с живым организмом по необычайно высокой чувствительности организма к любым воздействиям на него. Воздействия не просто нарушают нормальный ход биологических процессов, а вызывают сложные приспособительные реакции, разнообразные вразличных органах и в различных условиях. Искажение смысла измерений может оказаться столь существенным, что становится невозможно вносить поправки в явления, не свойственные изучаемому объекту. При этом, методы коррекции,используемые с успехом в физике и технике, зачастую бесполезны в биофизике.

Ещё в прошлом веке делались попытки использовать методы и теории физики для изучения и понимания природы биологических явлений. Причём исследователи рассматривали живые ткани и клетки как физические системы и не учитывали того факта, что основную роль в этих системах играет химия. Именно поэтому попытки решать задачи оценки свойств биологического объекта с чисто физических позиций носили наивный характер.

Основным методом этого направления являлись поиски аналогий.

Биологические явления, сходные с явлениями чисто физическими трактовались, соответственно, как физические.

Например эффект мышечного сокращения объясняли по аналогии с пьезоэлектрическим эффектом, на основании только того факта, что при наложении потенциала на кристалл происходило изменение длины кристалла, примерно так же как происходило изменение длины мышцы при сокращении. Рост клеток считали аналогичным росту кристалла. Клеточное деление рассматривали как явление, обусловленное только поверхностно-активными свойствами наружных слоёв протоплазмы. Амебоидное движение клеток уподоблялось изменению поверхностного натяжения и, соответственно, его моделировали движением ртутной капли в растворе кислоты.

Даже значительно позже, в двадцатые годы нашего столетия, детально рассматривали и изучали модель нервного проведения на анализе поведения так называемой модели Лили. Эта модель представляла собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом плёнкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и так далее. Другими словами, получилось распространение волны разрушения и восстановления, очень похожее на распространение волны электроотрицательности возникающей при раздражении нерва.

Возникновение и развитие в физике квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиции статистической физики. В это время появляется формальная теория, которая объясняла лучевое поражение как результат случайного попадания кванта (или ядерной частицы) в особо уязвимые клеточные структуры. При этом совершенно упускались из вида те конкретные фотохимические реакции и последующие химические процессы, которое определяют развитие лучевого поражения во времени.

Ещё сравнительно недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности проводников полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.

Это направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов. Попытки использования чисто физических представлений для понимания биологических явлений и природы живой материи дали большое количество спекулятивных теорий и ясно показали, что прямой путь физики в биологию не продуктивен, так как живые организмы стоят несравненно ближе к химическим системам, чем к физическим.

Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров. Некоторые разделы физической химии, в которых физика получила доминирующее значение, стали называться химической физикой.

Именно с возникновением физической химии связано развитие биофизики.

Многие важные для биологии представления пришли в неё из физической химии. Достаточно напомнить, что применение физико-химической теории растворов электролитов к биологическим процессам, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.

С развитием физической и коллоидной химии расширяется фронт работ в области биофизики расширяется. Появляются попытки объяснить с этих позиций механизмы реагирования организма на внешние воздействия. Так большую роль в развитии биофизики сыграла школа Лёба (J. Loeb 1906 г). В работе Лёба были выявлены физико-химические основы явлений партеногенеза и оплодотворения. Конкретную физико-химическую интерпретацию получило явление антагонизма ионов.

Позднее появились классические исследования Шаде (H. Schde) о роли ионных и коллоидных процессов в патологии воспаления. Эти исследования завершаются фундаментальным трудом «Физическая химия во внутренней медицине», которые издаётся в России в 1911–1912 гг.

Первая мировая война приостановила развитие биофизики как науки.

Но уже в 1922 году в СССР открывается «Институт биофизики», которым руководит П.П. Лазарев. Здесь он разрабатывает ионную теорию возбуждения, которая в это же время разрабатывается и Нернстом Было установлено, что в явлениях возбуждения и проведения решающая роль принадлежит именно ионам.

С.И. Вавилов занимается вопросами предельной чувствительности глаза. В.Ю. Чаговец разрабатывает ионную теорию возникновения биопотенциалов, Н.К. Кольцов обосновывает роль поверхностного натяжения, ионов и рН в морфогенезе.

Школа Кольцова сыграла видную роль в развитии биофизики в СССР. Его ученики широко разрабатывали вопросы влияния физико-химических факторов внешней среды на клетки и их структуры.

Несколько позже (1934) Родионов С.Р. и Франк Г.М. открыли явление фотореактивации, Завойский (1944) метод электронного парамагнитного резонанса.

Основной итог начального периода развития биофизики – это вывод о принципиальной возможности использования в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи.

Важное общеметодическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики),

Применение представлений коллоидной химии к анализу некоторых биологических процессов показало, что в основе протоплазмы различными факторами лежит коагуляция биоколлоидов. В связи с возникновением учения о полимерах коллоидная химия протоплазмы переросла в биофизику полимеров, и, особенно, полиэлектролитов.

Появление химической кинетики также вызвало появление аналогичного направления в биологии. Ещё Аррениус – один из основателей химической кинетики, показал, что общие закономерности химической кинетики применимы к изучению кинетических закономерностей в живых организмах и к отдельным биохимическим реакциям.

Успехи применения физической и коллоидной химии при объяснении ряда биологических явлений нашли отражение и в медицине.

Была выявлена роль коллоидных и ионных явлений в воспалительном процессе. Физико-химическую интерпретацию получили закономерности клеточной проницаемости и её изменений при патологических процессах, то есть физико-химическая (биофизическая патология).

С развитием биофизики в биологию проникли и точные экспериментальные методы исследований – спектральные, изотопные, радиоскопические.

2. Модели материальной точки и абсолютно твердого тела. Параметры движения (радиус-вектор, перемещение, скорость, ускорение). Принцип инерции и его анализ.

Материальная точка

Во многих кинематических задачах оказывается возможным пренебречь размерами самого тела. Еще раз рассмотрим автомобиль, движущийся из Минска в Брест. Расстояние между этими городами порядка 350 километров, размеры автомобиля - несколько метров, поэтому в такой ситуации при описании положения автомобиля можно не учитывать его размеры - если капот автомобиля находится в Бресте у нужного подъезда нужного дома, то можно считать, что и его багажник находится приблизительно там же. Таким образом, в данной задаче можно мысленно заменить автомобиль его моделью - телом, размеры которого пренебрежимо малы. Такая модель тела очень часто используется в физике и называется материальной точкой .

Материальная точка - это идеальная модель тела, размерами которого в данных условиях можно пренебречь.

Общим у геометрической и материальной точек является отсутствие собственных размеров. Материальную точку, по мере необходимости, можно «наделять» свойствами, которыми обладают реальные тела, например, массой, энергией, электрическим зарядом и так далее.

Одним из критериев применимости модели материальной точки является малость размеров тела по сравнению с расстоянием, на которое оно перемещается. Однако это условие не является абсолютно однозначным. Так, описывая движение Земли вокруг Солнца при расчете ее положения на орбите, размерами Земли можно пренебречь, считать ее материальной точкой. Однако, если нам необходимо рассчитать времена восхода и заката Солнца, модель материальной точки принципиально неприменима, так как это описание требует учета вращения Земли, учета ее размеров и формы.

Рассмотрим еще один пример. Спринтеры соревнуются на стометровой дистанции. Цель описания движения – выявить, кто из спортсменов пробегает дистанцию за меньшее время (задача чисто кинематическая). Можно ли в данной задаче считать бегуна материальной точкой? Его размеры значительно меньше дистанции забега, но достаточно ли они малы, чтобы ими можно было пренебречь? Ответ на эти вопросы зависит от требуемой точности описания. Так, на серьезных соревнованиях время измеряется с точностью 0.01 секунды, за это время бегун смещается на расстояние порядка 10 сантиметров (простая оценка, полученная исходя из средней скорости спринтера 10 м/с). Следовательно, погрешность, с которой определяется положением бегуна (10 см) меньше, чем его поперечные размеры, поэтому модель материальной точки в данном случае неприменима. Не случайно мастера спринтерского бега на финише «бросают грудь вперед», выигрывая драгоценные сотые доли секунды. Таким образом, вторым критерием применимости модели является требуемая точность описания физического явления.

В некоторых ситуациях можно использовать модель материальной точки, даже если размеры тела сравнимы и даже больше расстояний, на которое смещается тело. Это допустимо тогда, когда положение одной точки тела однозначно определяет положение всего тела. Так при скольжении бруска по наклонной плоскости, зная положение его центра (как, впрочем, и любой другой точки) можно найти положение всего тела. Если модель материальной точки оказывается неприменимой, то необходимо использовать другие более сложные модели.

Модель абсолютно твердого тела

При поступательном движении все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения, вследствие чего скорости и ускорения всех точек в каждый момент времени оказываются одинаковыми. Соответственно, при поступательном движении все точки тела описывают одинаковые траектории. Поэтому достаточно определить движение одной из точек тела (например, его центра инерции) для того, чтобы охарактеризовать полностью движение всего тела.

При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Траектории и линейные скорости разных точек различны, но углы поворота и угловые скорости одинаковы. Поскольку угловые скорости всех точек тела одинаковы, то говорят об угловой скорости вращения тела. Для описания вращательного движения нужно задать положение в пространстве оси вращения и угловую скорость тела в каждый момент времени.

При описании вращательного движения считается, что рассматриваемое тело не деформируется, т. е. расстояния между точками тела не изменяются. Такое тело в механике называется абсолютно твердым телом.

Механика

Предмет физика - наука изучающая общие и простейшие свойства и законы движения вещества и поля.

Физическая модель - называется его математическая модель, составленная из идеальных физических объектов.

Физическая модель - абстрактное понятие, которые используются для описания движения тел в зависимости от условий конкретных задач.

В основе классической механики лежат след. представления о пространстве и времени. Физическое пространство рассматривается как трехмерное пространство Евклида, а время считается не зависящим от материальных тел и всюду одинаковым.

Классическая механика -изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света, в основе лежат Ньютона законы.

Кинематика - наука, изучающая состояние движения независимо от вызывающих его сил.

Кинема́тика (греч. κινειν - двигаться) в физике - раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики - пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики - динамика.

Основная задача механики – определить положение тела в любой момент времени.

Механическое движение – это изменение положения тела в пространстве с течением времени относительно других тел.

Система отсчета -совокупность неподвижных относительно друг друга тел по отношению к которым рассматривается движение и отсчитывающих время часов.

Методы задания материально точки -нужно указать положения и скорости всех тел образующих систему.

Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой.

Многие реальные тела являются твердыми, то есть в течении длительного времени сохраняют свои размеры и форму, точнее говоря изменения размеров и формы настолько незначительны, что ими можно пренебречь. Моделью таких тел служит абсолютно

твердое тело.

Абсолютно твердое тело - это идеальная модель тела, изменением размеров и формы которого в данных условиях можно пренебречь.

Из этого определения следует, что расстояния между двумя любыми точками абсолютно твердого тела остается неизменным. Абсолютно твердое тело можно также рассматривать как совокупность материальных точек, жестко связанных между собой. Так


положение океанского лайнера в открытом море можно описать, пользуясь моделью материальной точки, а его пространственную ориентацию (курс, наклон) с помощью модели абсолютно твердого тела. Применимость модели абсолютно твердого тела обусловлена только конкретной исследуемой проблемой - целью моделирования и требуемой точностью.

Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела).

В трёхмерном пространстве и в случае отсутствия (других) связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.

Система отсчёта - это совокупность тела отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел .

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями , , .

В современной физике любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.

Материальная точка (частица) - это тело, размерами которого в условиях данной задачи можно пренебречь.

1.Теоретическая механика

2.Сопротивление материалов

3.Детали машин

Система сил. Эквивалентные системы сил. Равнодействующая сила. Основные задачи статики.

Линия вдоль которой осуществляются действие силы называется линия действия силы. Несколько сил действующих на тело образуют систему сил. В статике будем говорить о нескольких системах сил и определять эквиваленты систем. Эквивалентные системы оказывают на тело идентичное действие. Все силы действующие в статике будем делить на внешние и внутренние.

Аксиомы статики

Аксиома 1. Принцип инерции – всякая изолированная материальная точка находиться в состоянии покоя или равномерного и прямолинейного движения пока приложенные к ней внешние силы не выведут её из этого состояния. Состояние покоя или равномерного прямолинейного движения называют равновесием. Если точка или атт находится под действием системы сил и сохраняют равновесия, то действующая система сил является уравновешенной.

Аксиома 2. Условия равновесия двух сил. Две силы приложенные к атт образуют уравновешенную систему если они действуют, вдоль одной прямой и в противоположные стороны и равны по модулю.

Аксиома 3. Принцип присоединения и исключения уравновешенных сил. Если на атт действует система сил, то к ней можно добавить или от неё можно отнять уравновешенную систему сил. Полученная новая система будет эквивалентна первоначальной.

Следствие 1. Силу приложенную к твёрдому телу можно переносить в любую точку на линии действия, при этом равновесие не нарушается.

Аксиома 4. Правила параллелограмма и треугольника. Две приложенные к точке силы имеют равнодействующую приложенную в той же точки равную диагонали параллелограмма построен на этих силах как на сторонах. Такую операцию по замене системы сил равнодействующей силой называют сложением сил. В некоторых случаях правила используются на оборот, т.е. осуществляется преобразование единичной силы систем сходящих сил. Равнодействующее двух сил приложенных к точке тела равна замыкающей стороне треугольника, две другие стороны которого равны первоначальным силам.

Следствие 2. Теорема о равновесии трёх сил. Если три действующие на атт параллельные силы образовывают уравновешенную систему, то линии действующих сил пересекаются в одной точке.

Аксиома 5. Закон действия и противодействия. При контакте двух тел сила воздействия 1-ого тела на 2-ое равна силе действия 2-ого тела на 1-ое при чём обе силы действуют вдоль прямой и направлены в противоположные стороны.

Система сходящихся сил. Сложение плоской системы сходящихся сил. Силовой многоугольник.

Систе́ма сходя́щихся сил - это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Плоская система сходящихся сил – это такая совокупность действующих на тело сил, линия действия которых пересекается в одной точке. Две силы действующие на тело приложенные к одной точке образуют простейшую систему сходящихся сил. Для операции сложения системы из большего числа сходящихся сил используют правило построения силового многоугольника. При этом последовательно осуществляют операции сложения двух сил. Замыкающая сторона многоугольника и покажет величину направления вектора равнодействующей силы.

Аналитическое условие равновесия плоской системы сходящихся сил.

В место построения силового многоугольника равнодействующую систему сходящихся сил более точно и быстрее находят вычислением с помощью аналитического способа. В его основе лежит метод проекции с помощью которого координируют каждую систему проецируют на оси координат и вычисляют значение проекции. Если известно направление линии действия силы относительно оси Х то проекция этой силы на ось координат ОХ берётся с функцией косинус а проекция силы на ось У берётся с функцией силы. Если условие задачи направление силы отложено от оси ОУ то расчётную схему необходимо преобразовать высчитав угол между силой и осью ОХ.

При определении проекции сил на оси ОХ и ОУ существует правило знаков по которому будем определять направление и соответственно знак проекции. Если относительно проекции оси ох сила совпадает по направлению с положительной составляющей сил, то проекция силы берётся со знаком «+ . Если направление силы совпадает с областью отрицательных значений оси то знак проекции -. Это же правило характерно и для оси ОУ.

Если сила параллельна одной из осей то проекция силы на эту ось по величине равна самой силы;

Проекция этой же силы на другую ось. В ходе решения задач по определению величины равнодействующей силы аналитически это правило используется комплексно, например для заданной системы сходящихся сил построен силовой многоугольник замыкающая сторона которого – равнодействующая система. Спроецируем данный многоугольник на оси координат и определим величину проекций каждой действующей силы. Таким образом проекция равнодействующей системы сходящих сил на каждую из осей координат равна алгебраической суммы проекций составляющих сил на туже ось. Численное значение равнодействующей силы при этом определяется выражением Fe= корень Fex2+Fey2. Задачи по определению неизвестных сил реакций связей, характерные для статики решаются учитывая условия. При этом чаще всего задача решается аналитически а проверка правильности решения графически. В итоге силовой многоугольник должен получиться замкнутым.

Геометрическое условие равновесия плоской системы сходящихся сил.

Рассмотрим систему сил действующих над телом и определим величину равнодействующей. В результате последовательного сложения получился вектор суммарной силы который показывает действие системы сил на тело однако построение можно упростить пропуская промежуточные этапы по достроению вектора равнодействующей силы на каждом этапе. Построение силового многоугольника можно вести в любой последовательности. При этом величина и направление вектора равнодействующей силы не изменяются. В статике систему сил действующих на тело считают уравновешенной и если после операции сложения сил получится определённое направление к величины равнодействующая сила – замыкающая сторона многоугольника, то в эту систему необходимо добавить силу численно равную величине суммарного вектора лежащего с ним на одной прямой и противоположно направленную. В ходе построения многоугольника видим что система сил имеет равнодействующую, по этому для соблюдения условий статики добавили силу F5,которое уравновешивает вектор равнодействующих сил. В результате F1 F2 F3 F4 F5 стоит уравновешенной. Таким образом система сходящихся сил расположенных в плоскости уравновешенна тогда, когда силовой многоугольник замкнут.

Сложное движение точки.

Законы Ньютона сформулированы для движения точки по отношению к инерциальным системам отсчета. Для определения кинематических параметров точки при движении относительно произвольно движущейся системы отсчета вводится теория сложного движения.

Сложным называют движение точки по отношению к двум или нескольким системам отсчета.

Рисунок 3.1

На рисунке 3.1 показаны:

Условно принимаемая за неподвижную система отсчета O1x1y1z1;

Движущаяся относительно неподвижной система отсчета Oxyz;

Точка M, перемещающаяся по отношению к подвижной системе отсчета.

Аксиомы динамики.

Принцип инерции, Всякое изолированная материальная система находится в состоянии покоя или равномерного и прямолинейного движения пока приложенные внешние силы не выведут её из этого состояния. Это состояние называют инерцией. Меры инертности является масса тела.

Масса – количество вещества в единице объёма тела.

Второй закон Ньютона – основной закон динамики. F=ma, где F – действующая сила, m- масса тела, а – ускорение точки.

Ускорение сообщаемое материальной точке или системе точек силой пропорциональной величине силы и совпадает с направлением силы. На любую точку в пределах земли действует сила тяжести G=mg , где G - сила тяжести определяющая вес тела.

Третий закон Ньютона. Силы взаимодействия двух тел равны по величине направлены вдоль одной прямой в противоположные стороны. В динамике при взаимодействии двух тел ускорение обратно пропорционально массе.

Закон независимости действия силы. Каждая сила системы оказывает такое же действие на материальный объект как если бы она действовала одна при этом ускорении которое преобразует тело от системы сил равно геометрической сумме ускорений сообщаемых точке каждой силой отдельно.

Работа силы тяжести.

Рассмотрим перемещение тела по траектории сменяющейся высотой.

Работа силы тяжести зависит от изменения высоты и определяется W (b)=G(h1-h2).

При подъёме тела работа силы тяжести отрицательна т.к. под действием силы осуществляется сопротивление движения. При опускании тела работа силы тяжести величина положительная.

Цели и задачи раздела «Детали машин». Механизм и машина. Детали и узлы. Требования, предъявляемые к машинам, узлам и их деталям.

Детали машин-наука изучающая метода расчета и конструирования машинных деталей и узлов.

В развитии соврем. Машиностроения выделяют выделяют 2 тенденции:

1.непрерывный рост мшиностроения увеличение числа и номенклатуры деталей и узлов общего назначения

2.Повышение мощности и производит.машин их технологичности и,экономичности,веса и размеров оборудования.

Машина-устройство выполн. Механ. Движения для преобразования энергии материалов движения с целью повышения производительности и замены труда.

Деляться на 2 группы:

Машины двигатели(ДВС,поравая машина,электродвигатель)

Рабочие машины(оборудование,транспортеры) и другие устройства облегчающие или заменяющие физический труд или логич. Деятельность человека.

Механизм-совокупность взаимосвязанных звеньев предназначенные для преобразования движения одного или нескольких элементов машины.

Элементарная часть механизма состоящая из нескольких жестко соедин. Деталей-звено.Различают входные и выходные звенья,а также ведущие и ведомые.

Все машины и механизмы состоят из деталей и узлов.

Деталь изделие изготовленное из одного материала без сборочных операций.

Узел-закончен. Сбороч. Единица состоящей из ряда деталей имеющих общее функциональное назначение.

Все детали и узлы подразделяются на:

1.Элементы общего назначения

А)содинит. Детали и соединения

Б)передача вращ. Момента

В)детали и узлы обслужив. Передачи

Г)опорные детали машин

2.Элементы специального назначения.

Основные понятия о надежности и их деталей. Критерии работоспособности и расчета деталей машин. Проектный и проверочный расчет.

Надежность обусловлена соблюд. Критериев работоспособности- это свойство отдельной детали или всей машины выполнять заданные функции с сохранением эксплутационных показателей в течении определенного интервала времени.

Надежность зависит от особенностей создания и эксплуатации машины.В результате эксплуатации машины при нарушениях возникают неисправности вызывающие потерю.

Основным показателем надежности является вероятность безотказной работы Pt-коэффициент надежности,который показывает вероятность того,что в заданном для машины интервале времени(в часах) не возникает отказ.В результате определ. Величина вероятности безотказной работы по формуле Pt=1-Nt/N,где Nt- число машин или деталей отказавших к концу срока службы машины,N- число машин и деталей участвующих в исспытании.Коэффициент надежности всей машины в целом равен коэффициенту Pt=Pt1*Pt2…Ptn.Надежность является одним из основных показателей качества машина,которая связана с работоспособностью.

Работоспособность - состояние объекта при котором спосо­бен выполнять заданные функции сохраняя значения заданных параметров в пределах установленной техническо-нормативных документаций.

Основные критерии работоспособности д.м. является:

Прочность, жёсткость, износостойкость, теплостойкость, виброустойчивость.

При конструирование д.м. расчёт ведут обычно по одному или двум критериям, остальные критерии удовлетворяются заведомо или не имеют практического значения рассматриваемой детали.

Резьбовые соединения. Классификация резьб и основные геометрические резьбы.Основные типы резьб,их сравнительая характеристика и область применения.Конструктивные формы т спобобы стопорения резьбовых соединений.

Резьбовым называют соединение составных частей изделия с применением детали, имеющей резьбу.
Резьба получается прорезанием на поверхности стержня канавок при движении плоской фигуры – профиля резьбы (треугольника, трапеции и т.д.)

Достоинства резьбовых соединений
1) универсальность,
2) высокая надёжность,
3) малые габариты и вес крепёжных резьбовых деталей,
4) способность создавать и воспринимать большие осевые силы,
5) технологичность и возможность точного изготовления.

Недостатки резьбовых соединений
1) значительная концентрация напряжений в местах резкого изменения поперечного сечения;
2) низкий КПД подвижных резьбовых соединений.

Классификация резьб
1) По форме поверхности, на которой образована резьба (рис. 4.3.1):
- цилиндрические;
- конические.

2) По форме профиля резьбы:
- треугольные (рис.4.3.2.а),
- трапециидальные (рис. 4.3.2.б),
- упорные (рис.4.3.2.в),
- прямоугольные (рис.4.3.2.г) и
- круглые (рис. 4.3.2.д).

3) По направлению винтовой линии:
правая и левая.
4) По числу заходов:
однозаходные, многозаходные (заходность определяется с торца по количеству сбегающих витков).
5) По назначению:
-крепёжные,
-крепёжно-уплотняющие,
-резьбы для передачи движени

Принцип работы и устройство фрикционных передач с нерегулируемым (постоянным) передаточным числом. Достоинства и недостатки, область применения. Цилиндрическая передача. Материалы катков. Виды разрушения рабочих поверхностей катков.

Фрикционные передачи состоят из двух катков (рис.9.1): ведущего 1 и ведомого 2, которые прижимаются один к другому силой (на рисунке - пружиной), так что сила трения в месте контакта катков достаточна для передаваемой окружной силы .

Применение.

Фрикционные передачи с нерегулируемым передаточным числом в машиностроении применяются сравнительно редко, например, во фрикционных прессах, молотах, лебедках, буровой технике и т.п.). В качестве силовых передач они громоздки и малонадежны. Эти передачи применяются преимущественно в приборах, где требуется плавность и бесшумность работы (магнитофоны, проигрыва­тели, спидометры и т. п.). Они уступают зубчатым передачам в несущей способности.

Рис.9.1. Цилиндрическая фрикционная передача:

1 - ведущий каток; 2 - ведомый каток

А)Цилиндрическая фрикционная передача применяется для передачи движения между валами с параллельными осями.

Б)Коническая фрикционная передача применяется для механизмов у оси валов которых пересекаются.

Материалы катков должны обладать:

1.Высшим коэффициентом трения;

2.Высоким параметром износостойкости,прочности,теплопроводности.

3.Высоким модулем упругости,величина которого определяет нагрузочную способность.

Сочетания:сталь по стали,чугун по чугуну,композитные материалы по стали.

Достоинства фрикционных передач:

Плавность и бесшумность работы;

Простота конструкций и эксплуатации;

Возможность бесступенчатого регулирования передаточного числа;

Предохраняют механизмы от поломок при перегрузках вследствия скольжения ведущего катка по ведомому.

Недостатки фрикционных передач:

Большие нагрузки на валы и подшипники из-за большой силы прижатия катков;

Непостоянство передаточного числа из-за за еизбежного упругого скольжения катков;

Повышенный износ катков.

Фрикционную передачу с параллельными осями валов и с рабочими по­верхностями цилиндрической формы называют цилиндрической. Один вал диаметром d x устанавливают на неподвижных подшипниках, подшипники другого вала диаметром d 2 - плавающие. Катки 1 и 2 закреп­ляют на валах с помощью шпонок и прижимают один к другому специаль­ным устройством с силой F r . Цилиндрические фрикционные передачи с гладкими катками применяют для передачи небольшой мощности (в ма­шиностроении до 10 кВт); эти передачи находят широкое применение в приборостроении. Для одноступенчатых силовых цилиндрических фрикци­онных передач рекомендуется .

Общие сведения о цепных передачах: принцип работы, устройство, достоинства и недостатки, область применения. Детали цепных передач (приводные цепи, звездочки). Основные геометрические соотношения в передаче. Передаточное число.

Цепные передачи применяются в машинах,где движение между валами передается на значит. Расстоянии(до 8м).исспользуется в машинах,когда зубчатая передача не пригодня,а ременная,не надежна.исспользуется в машинах с максимальной мощности,с окружной скоростью вращения до 15 м/с.

Достоинства(по сравнению с ременными):

Более компактны

Значительные большие мощности

Незначительные силы действующие в зацепление,что не вызывает нагружение валов.

Недостатки передач:

1.Значительный шум при работе

2.Сравнительно большой износ в цепи

3.Обязательно наличие в конструкции натяжного устройства

4.Относительно высокая стоимость

5.Сложность изготовления цепи

Главный элемент передачи привод цепь,состоящая из совокупности шарниров.,соединеных между собой звеньями.Конструкция цепей стандартная и может быть роликовой или зубчато.Цепи могут состоять из одного или нскольких рядов.Должны быть прочными,износостойкими.Звездочки по вешнему виду и конструкции схожи с зубчатыми колёсами.Отличия лишь в профиле зуба,куда при работе передачи попадает цепь.передача наиболее эффективна с максимальным числов зубъев,меньшей звездочки.

Передаточное отношение определяется как u=n1/n2=z2/z1.Эта величина состовляет от 1 до 6. Если требуется повысить эту величину,то делают цепную передачу в несколько цепей.КПД=96…98%,а потеря мощности происходит при трении цепи о звездочки и в опорах.

Червячная передача с архимедовым червяком. Нарезание червяков и червячных колес. Основные геометрические соотношения. Скорость скольжения в червячной передаче. Передаточное число. Силы, действующие в зацеплении. Виды разрушения зубьев червячных колес. Материалы звеньев червячной пары. Тепловой расчет червячной передачи.

Архимедов червяк имеет трапецендальный профиль резьбы в осевом сечении. В торцевом сечении витки резьбы очерчены архимедовой спиралью. Наибольшее применение в машиностроении находят архимедовы червяки, так как технология их производства проста и наиболее отработана. Архимедовы червяки обычно не шлифуют. Их используют когда требуемые твердость материала червяка не превышает 350 НВ. При необходимости шлифовки рабочих поверхностей витков резьбы предпочитают конволютные и эвольвентные червяки, шлифовка которых по сравнению с архимедовым червяком проще и дешевле.

Архимедовы червяки подобны ходовым винтам с трапецеидальной резьбой. Основными способами их изготовления являются: 1. Нарезание резцом на токарно-винторезном станке (см. рис 5.4). Этот способ точный, но малопроизводительный. 2. Нарезание модульной фрезой на резьбофрезерном станке. Способ более производительный.

Рис. 5.7. Схема нарезания червячного колеса:
1 - фреза; 2 - заготовка колеса
Работоспособность червячной передачи зависит от твердости и шероховатости винтовой поверхности резьбы червяка, поэтому после нарезания резьбы и термообработ­ки червяки часто шлифуют, а в отдельных случаях полируют. Архимедовы червяки применяют и без шлифовки резьбы, так как для шлифовки их требуются круги фа­сонного профиля, что
затрудняет обработку и снижает точность изготовления. Эвольвентные червяки можно шлифовать плоской стороной круга на специальных червячно-шлифовальных станках,
поэтому будущее за эвольвентными червяками.
Червячные колеса чаще всего нарезают червячными фрезами [рис. 5.7), причем червячная фреза должна представлять копию червяка, с которым будет зацепляться червячное колесо. При нарезании Заготовка колеса и фреза совершают такое же взаимное движение, какое будут иметь червяк и червячное колесо при работе.

Основные геометрические параметры

Альфа=20 0 -профильный угол

p-шаг зубъев червяка и колеса,соответствующим делительным окружостям червяка и колеса

m-осевой модуль

z 1 -число заходов червяков

d 1 =q*m-диаметр делительной окружности

d a 1 =d 1 +2m-диапозон окруж. Выступа

d в =d 1 -2,4m-диаметры окружности впадин

время работы червячной передачи витки червяка скользят по зубьям червячного колеса.
Скорость скольжения v ск (рис. 5. 11) направлена по касательной к винтовой линии делительного цилиндра червяка. Являясь относительной скоростью, скорость скольжения легко определяется через окружные скорости червяка и колеса. Окружная скорость червяка (м/с)
окружная скорость колеса (м/с)

Рис.5.11

^ Силы в зацеплении
В приработанной червячной передаче, как и в зубчатых передачах, сила червяка воспринимается не одним, а несколькими зубьями колеса.
Для упрощения расчета силу взаимодействия червяка и колеса F n (рис. 5.12, а) принимают сосредоточенной и приложенной в полюсе
Виток червяка
Рис. 5.12. Схема сил, действующих в червячном зацеплении
зацепления П по нормали к рабочей поверхности витка. По правилу параллелепипеда F n раскладывают по трем взаимно перпендикулярным направлениям на составляющие F a , F n , F a1 . Для ясности изображения сил на рис. 5.12, б червячное зацепление раздвинуто.
Окружная сила на червяке F t1 численно равна осевой силе на червячном колесе F a2 .
F n = F a2 = 2T 1 /d 1 , (5.25)
где T 1 - вращающий момент на червяке.
Окружная сила на червячном колесе F t2 численно равна осевой силе на червяке F a1:
F t2 =F a1 = 2T 2 /d 2 , (5.27)
где T 2 - вращающий момент на червячном колесе.
Радиальная сила на червяке F r1 численно равна радиальной силе на колесе F r2 (рис. 5.12, в):
F r1 = F r2 = F t2 tga. (5.28)
Направления осевых сил червяка и червячного колеса зависят от направления вращения червяка, а также от направления линии витка. Направление силыF t2 всегда совпадает с направлением скорости вращения колеса, а сила F n направлена в сторону, противололожную скорости вращения червяка.

Червячная передача работает с большими тепловыделением.При значительном выделении масла возникает опасность заедания передачи,поэтому составляется уравнение теплового баланса так что бы кол-во выделяемого тепла при максимальной нагрузке передачи.

Подшипники скольжения.

ПС являются опорами осей и валов,восприним. Нагрузку и равномерно расспределяя её на корпусе узла.От подшипников значительной степени зависит надежности машин.В подшипниках скольжения выделяют 2-е поверхности-по наружной подшипник,жестко устанавливается в корпус,а по внутренней соприкосается с вращ. Валом или осью в результате между подшип. И кнутренним элементом возникает трение скольжения,которое приводит в случаи непрерывной эксплуатации подшипника к нагреву и износу.Для уменьшения поверхности вала и подшипника применяют смазку.

Достоинство ПС:

Сохраняет работоспособность при очень высоких угловых скоростях вращения

Конструкции подшипника смегчает толчки и удары,вибрации,из-за действия масленного слоя.

Обеспечив. Установку вала с высокой точностью

Возможность создание разъемной конструкции

Миним. Радиальные габариты

Бесшумность работы

Недостатки ПС:

Большие потери на преодоление силы трения,особенно при запуске машины

Необходимость постоянного ухода за подшипником всдествие высоких требований к смазке.

ПС применяется:

1.Высокоскоростные машины.

2.Валы сложной формы

3.При работе в машинах с агрессивными средами и водой

4.Для механизмов раб. С толчками и ударами

5.Для близко расположенных осей и валов с небольшими радиальными зазорами

6.В тихоходных мало ответственных механизмах и машинах.

По конструкции корпус подшипника может быть:

1.Неразъемный.Нет вызможности компенсировать износ подшипника.Применяется для опор осей и валов работающих с небольшой нагрузкой.

2.Разъёмные корпус состоит из двух отдельных элементов соединений,которых осущ. Посредством установки подшипника в рабочую машину.

Подшипники качения.

Подшипники качения представляют собой готовый узел, основным элементом которого являются тела качения – шарики 3 или ролики, установленные между кольцами 1 и 2 и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором 4.

В процессе работы тела качения катятся по дорожкам качения колец, одно из которых в большинстве случаев не-подвижно. Распределение нагрузки между несущими телами качения неравномерно и зависит от величины радиаль-ного зазора в подшипнике и от точности геометрической формы его деталей.

В отдельных случаях для уменьшения радиальных размеров подшипника кольца отсутствуют и тела качения катятся непосредственно по цапфе или корпусу.

Подшипники качения широко распространены во всех отраслях машиностроения. Они стандартизированы и изго-тавливаются в массовом производстве на ряде крупных специализированных заводов.

Достоинства и недостатки подшипников качения

Достоинства подшипников качения:
Сравнительно малая стоимость вследствие массового производства подшипников.
Малые потери на трение и незначительный нагрев (потери на трение при пуске и установившемся режиме ра-боты практически одинаковы).
Высокая степень взаимозаменяемости, что облегчает монтаж и ремонт машин.
Малый расход смазочного материала.
Не требуют особого внимания и ухода.
Малые осевые размеры.
Недостатки подшипников качения:
Высокая чувствительность к ударным и вибрационным нагрузкам вследствие большой жесткости конструк-ции подшипника.
Малонадежны в высокоскоростных приводах из-за чрезмерного нагрева и опасности разрушения сепаратора от действия центробежных сил.
Сравнительно большие радиальные размеры.
Шум при больших скоростях.

По форме тел качения подшипники качения классифицируют на:
шариковые (а);
роликовые.
Роликовые подшипники качения могут быть с:
цилиндрическими роликами (б);
коническими роликами (в);
бочкообразными роликами (г);
игольчатыми роликами (д);
витыми роликами (е).

По направлению воспринимаемой нагрузки подшипники качения классифицируют на:
радиальные;
радиально-упорные;
упорно-радиальные;
упорные.
По числу рядов тел качения подшипники качения делят на:
однорядные;
многорядные.
По способности самоустанавливаться подшипники качения делят на:
самоустанавливающиеся;
несамоустанавливающиеся.
По габаритам подшипники качения делят на серии.

Серии подшипников качения и их обозначение

Для каждого типа подшипника при одном и том же внутреннем диаметре имеются различные серии, отличающие-ся размерами колец и тел качения.
В зависимости от размера наружного диаметра подшипники бывают:
сверхлегкие;
особо легкие (1);
легкие (2);
средние (3);
тяжелые (4).
В зависимости от ширины подшипника серии подразделяются на:
особо узкие;
узкие;
нормальные;
широкие;
особо широкие.
Подшипники качения маркируют нанесением на торец колец ряда цифр и букв, условно обозначающих внутрен-ний диаметр, серию, тип, конструктивные разновидности, класс точности и др.
Две первые цифры справа обозначают его внутренний диаметр d. Для подшипников с d=20..495 мм размер внут-реннего диаметра определяется умножением указанных двух цифр на 5. Третья цифра справа обозначает серию диаметров от особо легкой серии (1) до тяжелой (4). Четвертая цифра справа обозначает тип подшипника:

Техническая механика как наука состоит из 3 разделов:

1.Теоретическая механика

2.Сопротивление материалов

3.Детали машин

В свою очередь теоретическая механика состоит из 3 подразделов:

1.Статика (изучает действующие на тела силы)

2.Кинематика (изучает уравнения движения тел)

3.Динамика (изучает движение тел под действием сил)

Материальная точка. Абсолютно твердое тело. Сила; единицы силы.

Материальная точка – геометрическая точка обладающая массой.

Абсолютно твёрдое тело – материальный объект, расстояние между двумя точками на поверхности которого всегда остаётся постоянным. Это цело является ещё и абсолютно жёстким. Любое атт можно рассматривать как систему материальных точек. Мера механического воздействия одного материального объекта на 2-ой – это сила.(н)

Сила – векторная величина, которая характеризуется направлением, точкой приложения, числовым значением или модулем силы.