Математическая статистика является одним из основных разделов такой науки, как математика, и представляет собой отрасль, изучающую методы и правила обработки определенных данных. Иными словами, она исследует способы раскрытия закономерностей, которые свойственны большим совокупностям одинаковых объектов, основываясь на их выборочном обследовании.

Задача данного раздела состоит в построении методов оценки вероятности или принятии определенного решения о характере развивающихся событий, опираясь на полученные результаты. Для описания данных используются таблицы, диаграммы, а также корреляционные поля. применяются редко.

Математическая статистика используются в различных областях науки. К примеру, для экономики важно обрабатывать сведения об однородных совокупностях явлений и объектов. Ими могут являться изделия, выпускаемые промышленностью, персонал, данные о прибыли и т. д. В зависимости от математической природы результатов наблюдений, можно выделить статистику чисел, анализ функций и объектов нечисловой природы, многомерный анализ. Помимо этого, рассматривают общие и частные (связанные с восстановлением зависимостей, использованием классификаций, выборочными исследованиями) задачи.

Авторы некоторых учебников считают, что теория математической статистики является лишь разделом теории вероятности, другие - что это самостоятельная наука, имеющая собственные цели, задачи и методы. Однако в любом случае ее использование очень обширно.

Так, наиболее ярко математическая статистика применима в психологии. Ее использование позволит специалисту правильно обосновать найти зависимость между данными, обобщить их, избежать многих логических ошибок и многое другое. Нужно отметить, что измерить тот или иной психологический феномен или свойство личности без вычислительных процедур часто просто невозможно. Это говорит о том, что азы данной науки необходимы. Иными словами, ее можно назвать источником и базой теории вероятностей.

Метод исследования, который опирается на рассмотрение статистических данных, используется и в других областях. Однако сразу необходимо отметить, что его черты в применении к объектам, имеющим различную природу происхождения, всегда своеобразны. Поэтому объединять в одну науку физическую или не имеет смысла. Общие же черты данного метода сводятся к подсчету определенного числа объектов, которые входят в ту или иную группу, а также изучению распределения количественных признаков и применению теории вероятностей для получения тех или иных выводов.

Элементы математической статистики используются в таких областях, как физика, астрономия и т. д. Здесь могут рассматриваться значения характеристик и параметров, гипотезы о совпадении каких-либо характеристик в двух выборках, о симметрии распределения и многое другое.

Большую роль математическая статистика играет в проведении Их целью чаще всего является построение адекватных методов оценивания и проверка гипотез. В настоящее время огромное значение в данной науке имеют компьютерные технологии. Они позволяют не только значительно упростить процесс расчета, но и создать для размножения выборок или при изучении пригодности полученных результатов на практике.

В общем случае методы математической статистики помогают сделать два вывода: или принять искомое суждение о характере или свойствах изучаемых данных и их взаимосвязей, или доказать, что полученных результатов недостаточно для того, чтобы делать выводы.

Математическая статистика - это современная отрасль математической науки, которая занимается статистическим описанием результатов экспериментов и наблюдений, а также построением математических моделей, содержащих понятия вероятности. Теоретической базой математической статистики служит теория вероятностей.

В структуре математической статистики традиционно выделяют два основных раздела: описательная статистика и статистические выводы (рис. 1.1).

Рис. 1.1. Основные разделы математической статистики

Описательная статистика используется для:

o обобщение показателей одной переменной (статистика случайной выборки);

o выявление взаимосвязей между двумя и более переменными (корреляционно-регрессионный анализ).

Описательная статистика дает возможность получить новую информацию, быстрее понять и всесторонне оценить ее, то есть выполняет научную функцию описания объектов исследования, чем и оправдывает свое название. Методы описательной статистики призваны превратить совокупность отдельных эмпирических данных на систему наглядных для восприятия форм и чисел: распределения частот; показатели тенденций, вариативности, связи. Этими методами рассчитываются статистики случайной выборки, которые служат основанием для осуществления статистических выводов.

Статистические выводы дают возможность:

o оценить точность, надежность и эффективность выборочных статистик, найти ошибки, которые возникают в процессе статистических исследований (статистическое оценивание)

o обобщить параметры генеральной совокупности, полученные на основании выборочных статистик (проверка статистических гипотез).

Главная цель научных исследований - это получение нового знания о больших класса явлений, лиц или событий, которые принято называть генеральной совокупности.

Генеральная совокупность - это полная совокупность объектов исследования, выборка - ее часть, которая сформирована определенным научно обоснованным способом 2.

Термин "генеральная совокупность" используется тогда, когда речь идет о большой, но конечную совокупность исследуемых объектов. Например, о совокупности абитуриентов Украины в 2009 году или совокупность детей дошкольного возраста города Ровно. Генеральные совокупности могут достигать значительных объемов, быть конечным и бесконечным. На практике, как правило, имеют дело с конечным совокупностями. И если отношение объема генеральной совокупности к объему выборки составляет более 100, то, по словам Гласса и Стэнли методы оценки для конечных и бесконечных совокупностей дают в сущности одинаковые результаты . Генеральной совокупностью можно называть и полную совокупность значений какого-то признака. Принадлежность выборки к генеральной совокупности является главным основанием для оценки характеристик генеральной совокупности по характеристикам выборки.

Основная идея математической статистики базируется на убеждении о том, что полное изучение всех объектов генеральной совокупности в большинстве научных задач или практически невозможно, или экономически нецелесообразно, поскольку требует много времени и значительных материальных затрат. Поэтому в математической статистике применяется выборочный подход, принцип которого показано на схеме рис. 1.2.

Например, по технологии формирования различают выборки рандомизированы (простые и систематические), стратифицированные, кластерные (см. Раздел 4).

Рис. 1.2. Схема применения методов математической статистики Согласно выборочным подходом использования математико-статистических методов может проводиться в такой последовательности (см. Рис. 1.2):

o с генеральной совокупности, свойства которой подлежат исследованию, определенными методами формируют выборку - типичную но ограниченное количество объектов, к которым применяют исследовательские методы;

o в результате методов наблюдений, экспериментальных действий и измерений над объектами выборки получают эмпирические данные;

o обработка эмпирических данных с помощью методов описательной статистики дает показатели выборки, которые называются статистиками - как и название дисциплины, кстати;

o применяя методы статистических выводов к статистик, получают параметры, которые характеризуют свойства генеральной совокупности.

Пример 1.1. С целью оценки стабильности уровня знаний (переменная X) проведено тестирование рандомизированной выборки 3 студентов объемом n. Тесты содержали по m заданий, каждое из которых оценивалось по системе баллов: "выполнено" "- 1," не выполнено "- 0. остались средние текущие достижения студентов X

3 рандомизированных выборка (от англ. Random - случайный) - это репрезентативная выборка, которая сформирована по стратегии случайных испытаний.

на уровне прошлых лет / ч? Последовательность решения:

o выяснить содержательную гипотезу типа: "если текущие результаты тестирования не будут отличаться от прошлых, то можно считать уровень знаний студентов неизменным, а учебный процесс - стабильным";

o сформулировать адекватную статистическую гипотезу, например, нуль-гипотезу Н 0 о том, что "текущий средний балл X статистически не отличается от среднего показателя прошлых лет / ч", то есть Н 0: X = / г, против соответствующей альтернативной гипотезы X Ф ^ ;

o построить эмпирические распределения исследуемой переменной X;

o определить (при необходимости) корреляционные связи, например, между переменной X и другими показателями, построить линии регрессии;

o проверить соответствие эмпирического распределения нормальному закону;

o оценить значение точечных показателей и доверительный интервал параметров, например, среднего;

o определить критерий для проверки статистических гипотез;

o выполнить проверку статистических гипотез на основе выбранных критериев;

o сформулировать решение о статистической нуль-гипотезы на определенном уровне значимости;

o перейти от решения о принятии или отклонении статистической нуль-гипотезы интерпретации выводов относительно гипотезы содержательной;

o сформулировать содержательные выводы.

Итак, если обобщить вышеперечисленные процедуры, применение статистических методов состоит из трех основных блоков:

Переход от объекта реальности к абстрактной математико-статистической схемы, то есть построение вероятностной модели явления, процесса, свойства;

Проведение расчетных действий собственно математическими средствами в рамках вероятностной модели по результатам измерений, наблюдений, эксперимента и формулировки статистических выводов;

Интерпретация статистических выводов о реальной ситуации и принятия соответствующего решения.

Статистические методы обработки и интерпретации данных опираются на теорию вероятностей. Теория вероятностей является основой методов математической статистики. Без использования фундаментальных понятий и законов теории вероятностей невозможно обобщения выводов математической статистики, а значит и обоснованного их использования для научных и практических целей.

Так, задачей описательной статистики является превращение совокупности выборочных данных на систему показателей - статистик - распределений частот, мер центральной тенденции и изменчивости, коэффициентов связи и тому подобное. Однако, статистики являются характеристиками, по сути, конкретной выборки. Конечно, можно рассчитывать выборочные распределения, выборочные средние, дисперсии и т. Д., Но подобный "анализ данных" имеет ограниченную научно-познавательную ценность. "Механическое" перенос каких-либо выводов, сделанных на основе таких показателей, на другие совокупности не является корректным.

Для того, чтобы иметь возможность переноса выборочных показателей или другие, или на более распространены совокупности, необходимо иметь математически обоснованные положения о соответствии и способности выборочных характеристик характеристиками этих распространенных так называемых генеральных совокупностей. Такие положения базируются на теоретических подходах и схемах, связанных с вероятностными моделях реальности, например, на аксиоматическом подходе, в законе больших чисел и т.д. Только с их помощью можно переносить свойства, которые установлены по результатам анализа ограниченной эмпирической информации, или на другие или на распространенные совокупности. Таким образом, построение, законы функционирования, использование вероятностных моделей, является предметом математической области под названием "теория вероятностей", становится сутью статистических методов.

Таким образом, в математической статистике используются два параллельных строки показателей: первая строка, что имеет отношение к практике (это выборочные показатели) и второй, основанный на теории (это показатели вероятностной модели). Например, эмпирическим частотам, которые определены на выборке, соответствуют понятия теоретической вероятности; выборочном среднем (практика) соответствует математическое ожидание (теория) и т.д. Причем, в исследованиях выборочные характеристики, как правило, являются первичными. Они рассчитываются на основе наблюдений, измерений, экспериментов, после чего проходят статистическое оценивание способности и эффективности, проверку статистических гипотез в соответствии с целями исследований и в конце принимаются с определенной вероятностью как показатели свойств исследуемых совокупностей.

Вопрос. Задача.

1. Охарактеризуйте основные разделы математической статистики.

2. В чем заключается основная идея математической статистики?

3. Охарактеризуйте соотношение генеральной и выборочной совокупностей.

4. Объясните схему применения методов математической статистики.

5. Укажите перечень основных задач математической статистики.

6. Из каких основных блоков состоит применения статистических методов? Охарактеризуйте их.

7. Раскройте связь математической статистики с теорией вероятностей.

Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала» . При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

— одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

— многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

— статистика случайных процессов и временных рядов, где результат наблюдения – функция;

— статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей.

Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы — требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

Каждое исследование в области случайных явлений своими корнями всегда уходит в эксперимент, в опытные данные. Числовые данные, которые собирают при изучении какого-либо признака некоторого объекта, называются статистическими . Статистические данные являются первоначальным материалом исследования. Для того, чтобы они представляли научную или практическую ценность, их надо обработать методами математической статистики.

Математическая статистика - это научная дисциплина, предметом изучения которой является разработка методов регистрации, описания и анализа статистических экспериментальных данных, полученных в результате наблюдений массовых случайных явлений.

Основными задачами математической статистики являются:

    определение закона распределения случайной величины или системы случайных величин;

    проверка правдоподобия гипотез;

    определение неизвестных параметров распределения.

Все методы математической статистики основаны на теории вероятностей. Однако в силу специфичности решаемых задач математическая статистика выделяется из теории вероятностей в самостоятельную область. Если в теории вероятностей считается заданной модель явления и производится расчет возможного реального течения этого явления (рис.1), то в математической статистике подбирается подходящая теоретико-вероятностная модель, исходя из статистических данных (рис.2).

Рис.1. Общая задача теории вероятностей

Рис.2. Общая задача математической статистики

Как научная дисциплина математическая статистика развивалась вместе с теорией вероятностей. Математический аппарат этой науки построен во второй половине XIX века.

2. Генеральная совокупность и выборка.

Для изучения статистических методов вводятся понятия генеральной и выборочной совокупностей. В общем случае под генеральной совокупностью понимается случайная величина X с функцией распределения
. Выборочной совокупностью или выборкой объемаn для данной случайной величины X называется набор
независимых наблюдений этой величины, гденосит название выборочного значения или реализации случайной величиныX. Таким образом, можно рассматривать как числа (если эксперимент проведен и выборка состоялась) и как случайные величины (до проведения эксперимента), поскольку они меняются от выборки к выборке.

Пример 1 . Для определения зависимости толщины ствола дерева от его высоты было отобрано 200 деревьев. В данном случае объем выборки n=200.

Пример 2. В результате распиловки древесностружечных плит на круглопильном станке было получено 15 значений удельной работы резания. В этом случае n=15.

Д
ля того чтобы по данным выборки уверенно судить об интересующем нас признаке генеральной совокупности, объекты выборки должны правильно ее представлять, то есть выборка должна бытьрепрезентативной (представительной). Репрезентативность выборки обычно достигается случайностью отбора объектов: каждому объекту генеральной совокупности обеспечивается равная со всеми остальными вероятность попадания в выборку.

Рис.3. Демонстация репрезентативности выборки

1. Математическая статистика. Введение

Математическая статистика - это такая дисциплина, которая применяется во всех областях научного знания.

Статистические методы предназначены для понимания "численной природы" действительности (Nisbett, et al., 1987).

Определение понятия

Математическая статистика - это раздел математики, посвященный методам анализа данных, преимущественно вероятностной природы. Она занимается систематизацией, обработкой и использованием статистических данных для теоретических и практ ических выводов.

Статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками. Здесь важно понять, что статистика имеет дело именно с количеством объектов, а не с их описательными признаками.

Цель статистического анализа - исследование свойств случайной величины. Для этого приходится несколько раз измерять значения изучаемой случайной величины. Полученная группа значений рассматривается как выборка из гипотетической генеральной совокупности .

Производится статистическая обработка выборки, и после этого принимается решение. Важно заметить, что вследствие начального условия неопределённости притятое решение всегда носит характер "нечёткого высказывания". Иными словами, в статистической обработке приходится иметь дело с вероятностями, а не с точными утверждениями.

Главное в статистическом методе - это подсчёт числа объектов, входящих в различные группы. Объекты собираются в группу по какому-то определённому общему признаку, а затем рассмотривается распределение этих объектов в группе по количественному выражению данного признака. В статистике часто применяется выборочный метод анализа, т.е. анализируется не вся группа объектов, а небольшая выборка - несколько объектов, взятых из большой группы. Широко используется теория вероятностей при статистической оценке наблюдений и при формировании выводов.

Основным предметом математической статистики является вычисление статистик (да простит нас читатель за тавтологию), являющихся критериями для оценки достоверности априорных предположений, гипотез или выводов по существу эмпирических данных.

Другое определение - “Статистики – это предписания, по которым из выборки рассчитывается некоторое число – значение статистики для данной выборки” [Закс, 1976]. Выборочные среднее и дисперсия, отношение дисперсий двух выборок или любые другие функции от выборки могут рассматриваться как статистики .

Вычисление "статистик" - это представление "одним числом" сложного стохастического (вероятностного) процесса.

Распределение Стьюдента

Статистики также являются случайными переменными. Распределения статистик (тест-распределения) лежат в основе критериев, которые построены на этой статистике. Например, В. Госсет, работая на пивоварне Гиннеса и публикуясь под псевдонимом “Стьюдент”, в 1908 г. доказал очень полезные свойства распределения отношения разности между выборочным средним и средним значением генеральной совокупности () к стандартной ошибке среднего значения генеральной совокупности , или t –статистики (распределение Стьюдента ):

. (5.7)

Распределение Стьюдента по форме при некоторых условиях приближается к нормальному .

Другими двумя важными распределениями выборочных статистик является c 2 -распределение и F -распределение , широко используемые в ряде разделов статистики для проверки статистических гипотез.

Итак, предмет математической статистики составляет формальная количественная сторона исследуемых объектов, безразличная к специфической природе самих изучаемых объектов.

По этой причине в приводимых здесь примерах речь идёт о группах данных, о числах, а не о конкретных измеряемых вещах. И поэтому по образцам расчётов, данных здесь, вы можете рассчитывать свои данные, полученные на самых разных объектах.

Главное - подобрать подходящий для ваших данных метод статистической обработки .

В зависимости от конкретных результатов наблюдений математическая статистика делится на несколько разделов.

Разделы математической статистики

        Статистика чисел.

        Многомерный статистический анализ.

        Анализ функций (процессов) и временных рядов.

        Статистика объектов нечисловой природы.

В современной науке считается, что любая область исследований не может быть настоящей наукой до тех пор, пока в неё не проникнет математика. В этом смысле математическая статистика является полномочным представителем математики в любой другой науке и обеспечивает научный подход к исследованиям. Можно сказать, что научный подход начинается там, где в исследовании появляется математическая статистика. Вот почему математическая статистика так важна для любого современного исследователя.

Хотите быть настоящим современным исследователем - изучайте и применяйте в своей работе математическую статистику!

Статистика с необходимостью появляется там, где происходит переход от единичного наблюдения к множественному. Если у вас имеется множество наблюдений, замеров и данных - то без математической статистики вам не обойтись.

Математическую статистику подразделяют на теоретическую и прикладную.

Теоретическая статистика доказывает научность и правильность самой статистики.

Теоретическая математи ческая статистика - наука, изучающая методы раскрытия закономерностей, свойственных большим совокупностям однородных объектов, на основании их выборочного обследования.

Этим разделом статистики занимаются математики, и они любят с помощь своих теоретических математических доказательств убеждать нас в том, что статистика сама по себе научна и ей можно доверять. Беда в том, что эти доказательства способны понять только другие математики, а обычным людям, которым нужно пользоваться математической статистикой эти доказательства всё равно не доступны, да и совершенно не нужны!

Вывод: Если вы не математик, то не тратьте зря свои силы на понимание теоретических выкладок по поводу математической статистики. Изучайте собственно статистические методы, а не их математические обоснования.

Прикладная статистика учит пользователей работать с любыми данными и получать обобщённые результаты. Неважно, какие именно это данные, важно, какое количество этих данных находится в вашем распоряжении. Кроме того, прикладная статистика подскажет нам, насколько можно верить в то, что полученные результаты отражают действительное положение дел.

Для разных дисциплин в прикладной статистике используют различные наборы конкретных методов. Поэтому различают следующие разделы прикладной статистики: биологическая, психологическая, экономическая и другие. Они отличаются друг от друга комплектацией примеров и приемов, а также излюбленными методами вычислений.

Можно привести следующий пример различий между применением прикладной статистики для разных дисциплин. Так, статистическое изучение режима турбулентных водных потоков производится на основе теории стационарных случайных процессов. Однако применение той же теории к анализу экономических временных рядов может привести к грубым ошибкам ввиду того, что допущение того, что распределение вероятностей сохраняется неизменным в этом случае, как правило, совершенно неприемлемо. Следовательно, для этих разных дисциплин потребуются разные статистические методы.

Итак, математическую статистику должен применять в своих исследованиях любой современный учёный. Даже тот учёный, который работает в направлениях, которые весьма далеки от математики. И он должен уметь применять прикладную статискику к своим данным, даже не зная её.

© Сазонов В.Ф., 2009.