Строение и функции ДНК

Наименование параметра Значение
Тема статьи: Строение и функции ДНК
Рубрика (тематическая категория) Образование

ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 ᴦ. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, ᴛ.ᴇ. представляет собой двойную спираль (исключение - некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК - 2 нм, расстояние между сосœедними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определœенное: против аденина одной цепи в другой цепи всœегда располагается тимин, а против гуанина - всœегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, принято называть принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всœегда точно соответствует содержанию цитозина, а аденина - тимину (ʼʼправило Чаргаффаʼʼ ), но объяснить данный факт он не смоᴦ.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), ᴛ.ᴇ. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. ʼʼПерилаʼʼ этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); ʼʼступениʼʼ - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

Строение и функции ДНК - понятие и виды. Классификация и особенности категории "Строение и функции ДНК" 2017, 2018.

По своему химическому строению ДНК (дезоксирибонуклеиновая кислота ) является биополимером , мономерами которого являются нуклеотиды . То есть ДНК - это полинуклеотид . Причем молекула ДНК обычно состоит из двух цепей, закрученных друг относительно друга по винтовой линии (часто говорят «спирально закрученных») и соединенных между собой водородными связями.

Цепочки могут быть закручены как в левую, так и в правую (чаще всего) сторону.

У некоторых вирусов ДНК состоит из одной цепи.

Каждый нуклеотид ДНК состоит из 1) азотистого основания, 2) дезоксирибозы, 3) остатка фосфорной кислоты.

Двойная правозакрученная спираль ДНК

В состав ДНК входят следующие: аденин , гуанин , тимин и цитозин . Аденин и гуанин относятся к пуринам , а тимин и цитозин - к пиримидинам . Иногда в состав ДНК входит урацил, который обычно характерен для РНК , где замещает тимин.

Азотистые основания одной цепи молекулы ДНК соединяются с азотистыми основаниями другой строго по принципу комплементарности: аденин только с тимином (образуют между собой две водородные связи), а гуанин только с цитозином (три связи).

Азотистое основание в самом нуклеотиде соединено с первым атомом углерода циклической формы дезоксирибозы , которая является пентозой (углеводом с пятью атомами углерода). Связь является ковалентной, гликозидной (C-N). В отличие от рибозы у дезоксирибозы отсутствует одна из гидроксильных групп. Кольцо дезоксирибозы формируют четыре атома углерода и один атом кислорода. Пятый атом углерода находится вне кольца и соединен через атом кислорода с остатком фосфорной кислоты. Также через атом кислорода у третьего атома углерода присоединяется остаток фосфорной кислоты соседнего нуклеотида.

Таким образом, в одной цепи ДНК соседние нуклеотиды связаны между собой ковалентными связями между дезоксирибозой и фосфорной кислотой (фосфодиэфирная связь). Образуется фосфат-дезоксирибозный остов. Перпендикулярно ему, навстречу другой цепочке ДНК, направлены азотистые основания, которые соединяются с основаниями второй цепочки водородными связями.

Строение ДНК таково, что остовы соединенных водородными связями цепочек направлены в разные стороны (говорят «разнонаправлены», «антипараллельны»). С той стороны, где одна заканчивается фосфорной кислотой, соединенной с пятым атомом углерода дезоксирибозы, другая заканчивается «свободным» третьим атомом углерода. То есть остов одной цепочки перевернут как бы с ног на голову относительно другой. Таким образом, в строении цепочек ДНК различают 5"-концы и 3"-концы.

При репликации (удвоении) ДНК синтез новых цепочек всегда идет от их 5-го конца к третьему, так как новые нуклеотиды могут присоединяться только к свободному третьему концу.

В конечном итоге (опосредованно через РНК) каждые идущие подряд три нуклеотида в цепи ДНК кодируют одну аминокислоту белка.

Открытие строения молекулы ДНК произошло в 1953 году благодаря работам Ф. Крика и Д. Уотсона (чему также способствовали ранние работы других ученых). Хотя как химическое вещество ДНК было известно еще в XIX веке. В 40-х годах XX века стало ясно, что именно ДНК является носителем генетической информации.

Двойная спираль считается вторичной структурой молекулы ДНК. У клетках эукариот подавляющее количество ДНК находится в хромосомах , где связана с белками и другими веществами, а также подвергается более плотной упаковке.

Пространственную модель молекулы ДНК в 1953 году предложили американские исследователи генетик Джеймс Уотсон (род. 1928) и физик Фрэнсис Крик (род. 1916). За выдающийся вклад в это открытие им была присуждена Нобелевская премия по физиологии и медицине 1962 года.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого является нуклеотид. В состав каждого нуклеотида входят остаток фосфорной кислоты, соединенный с сахаром дезоксирибозой, который, в свою очередь, соединен с азотистым основанием. Азотистых оснований в молекуле ДНК четыре вида: аденин, тимин, гуанин и цитозин.

Молекула ДНК состоит из двух длинных цепей, сплетенных между собой в виде спирали, чаще всего, правозакрученной. Исключение составляют вирусы, которые содержат одноцепочную ДНК.

Фосфорная кислота и сахар, которые входят в состав нуклеотидов, образуют вертикальную основу спирали. Азотистые основания располагаются перпендикулярно и образуют «мостики» между спиралями. Азотистые основания одной цепи соединяются с азотистыми основаниями другой цепи согласно принципу комплементарности, или соответствия.

Принцип комплементарности. В молекуле ДНК аденин соединяется только с тимином, гуанин – только с цитозином.

Азотистые основания оптимально соответствуют друг другу. Аденин и тимин соединяется двумя водородными связями, гуанин и цитозин – тремя. Поэтому на разрыв связи гуанин-цитозин требуется больше энергии. Одинаковые по размеру тимин и цитозин гораздо меньше аденина и гуанина. Пара тимин-цитозин была бы слишком мала, пора аденин-гуанин – слишком велика, и спираль ДНК искривилась бы.

Водородные связи непрочны. Они легко разрываются и так же легко восстанавливаются. Цепи двойной спирали под действием ферментов или при высокой температуре могут расходиться, как замок-молния.

5. Молекула рнк Рибонуклеиновая кислота (рнк)

Молекула рибонуклеиновой кислоты (РНК) тоже является биополимером, который состоит из четырех типов мономеров – нуклеотидов. Каждый мономер молекулы РНК содержат остаток фосфорной кислоты, сахар рибозу и азотистое основание. Причем, три азотистых основания такие же, как в ДНК – аденин, гуанин и цитозин, но вместо тимина в РНК присутствует близкий ему по строению урацил. РНК – одноцепочечная молекула.

Количественное содержание молекул ДНК в клетках какого-либо вида практически постоянно, однако количество РНК может существенно меняться.

Виды рнк

В зависимости от строения и выполняемой функции различают три вида РНК.

1. Транспортная РНК (тРНК). Транспортные РНК в основном находятся в цитоплазме клетки. Они переносят аминокислоты к месту синтеза белка в рибосому.

2. Рибосомальная РНК (рРНК). Рибосомальная РНК связывается с определенными белками и образует рибосомы – органеллы, в которых происходит синтез белков.

3. Информационная РНК (иРНК), или матричная РНК (мРНК). Информационная РНК переносит информацию о структуре белка от ДНК рибосоме. Каждая молекула иРНК соответствует определенному участку ДНК, который кодирует структуру одной белковой молекулы. Поэтому для каждого из тысяч белков, которые синтезируются в клетке, имеется своя особенная иРНК.

Открытие генетической роли ДНК

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. Впервые нуклеиновую кислоту, свободную от белков, получил Р. Альтман в 1889 г., который и ввел этот термин в биохимию. Лишь к середине 1930-х годов было до­казано, что ДНК и РНК содержатся в каждой живой клетке. Первостепенная роль в утверждении этого фундаментального положе­ния принадлежит А. Н. Белозерскому, впервые выделившему ДНК из растений. Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. О. Эверину, Колину Мак-Леоду и Маклину Мак-Карти (1944 г.) удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных (эксперимент Херши - Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно.В 1960 г. сразу в нескольких лабораториях был открыт фер­мент РНК-полимераза, осуществляющий синтез РНК на ДНК-матрицах. Генетический аминокислотный код был полностью расшифро­ван в 1961–1966 гг. усилиями лабораторий М. Ниренберга, С. Очоа и Г. Кораны.

Химический состав и структурная организация молекулы днк.

ДНК - дезоксирибонуклеиновая кислота. Молекула ДНК – это самый крупный биополимер, мономером которого является нуклеотид. Нуклеотид состоит из остатков 3 веществ: 1 – азотистого основания; 2 – углевода дезоксирибозы; 3 - фосфорной кислоты (рисунок – строение нуклеотида). Нуклеотиды, участвующие в образовании молекулы ДНК отличаются друг от друга азотистыми основаниями. Азотистые основание: 1 – Цитозин и Тимин (производные пиримидина) и 2 – Аденин и Гуанин (производные пурина). Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и остаток фосфорный кислоты соседнего (рисунок – строение полинуклеотидной цепи). Правило Чаргаффа (1951г.): число пуриновых оснований в ДНК всегда равно числу пиримидиновых, А=Т Г=Ц.



1953г. Дж. Уотсон и Ф. Крик – Представили модель строения молекулы ДНК (рисунок – строение молекулы ДНК).

Первичная структура – последовательность расположения мономерных звеньев (мононуклеотидов) в линейных полимерах. Цепь стабилизируется 3,5 – фосфодиэфирными связями.Вторичная структура – двойная спираль, формирование которой определяется межнуклеотидными водородными связями, которые образуются между основаниями входящими в канонические пары А-Т (2 водородные связи) и Г-Ц (3 водородные связи). Цепи удерживаются стекинг-взаимодействиями, электростатическими взаимодействиями,Ван-Дер-Ваальсовыми взаимодействиями.Третичная структура – общая форма молекул биополимеров. Сверхспиральная структура – когда замкнутая двойная спираль образует не кольцо, а структуру с витками более высокого порядка (обеспечивает компактность).Четвертичная структура – укладка молекул в полимолекулярные ансамбли. Для нуклеиновых кислот - это ансамбли, включающие молекулы белков.

Нуклеиновые кислоты – высокомолекулярные соединения из нуклеотидов. Чем сложнее клетка, тем больше генетической информации, следовательно, больше ДНК. Например, вирусы содержат одну молекулу ДНК или РНК, сравнительно небольшого размера. Фаги (вирусы бактерий) также содержат одну молекулу ДНК из 40-200 тыс. пар нуклеотидов. Бактериальные клетки имеют более сложную структуру и больше ДНК. Так, клетка кишечной палочки (E.coli) имеет генетический материал из 4-10 6 пар нуклеотидов (Мм 26-10 9 кДа) длиной 1,4 мм, что в 700 раз больше самой клетки. Клетка человека содержит 3-10 9 нуклеотидов в 46 хромосомах. Общая длина молекулы ДНК составляет около 2 метров. Одна хромосома содержит 1 молекулу ДНК. Основная масса ДНК находится в клеточном ядре в хромосомах. Однако небольшая часть ДНК (около 0,1%) обнаруживается в митохондриях. Количество ДНК в пикограммах на 1 клетку составляет у человека 6,8, у курицы – 2,3, дрожжевых клеток – 0,05, E.coli – 0,01. Нуклеотидный состав ДНК изучен Чаргаффом (1949 г.) и установлено, что нуклеотидный состав из различных тканей одного вида животных одинаков, не зависит от возраста, условий питания и внешней среды. Определены правила Чаргаффа для ДНК:

    Сумма пуриновых нуклеотидов равна сумме пиримидиновых нуклеотидов: А+Г=Т+Ц.

    Количество аденина и цитозина равно количеству гуанина и тимина (А+Ц=Г+Т или А+Ц/Г+Т=1).

    В ДНК из различных источников неодинаково соотношение нуклеотидов: у одних преобладает содержание аденина над гуанином, тимина над цитозином (А+Т<Г+Ц), у других преобладает гуанин и цитозин над аденином и тимином (Г+Ц>А+Т), т.е. имеется видовая специфичность ДНК по нуклеотидному составу. Благодаря применению различных методов электорофореза, а так же ферментов рестриктаз («генных ножниц»), меченых соединений, методов секвенирования и других современных методов молекулярной биологии изучена последовательность нуклеотидов – первичная структура нуклеиновых кислот.

Первичная структура ДНК – последовательность нуклеотидов, образуется благодаря сложноэфирной связи, возникающей между остатками фосфорной кислоты у 3" углерода дезоксирибозы одного мононуклеотида с 5"углеродом дезоксирибозы другого мононуклеотида (рис.3.4.).

а) строение фрагментов молекул ДНК и РНК.

Сверхспиральная Релаксированная

кольцевая ДНК кольцевая ДНК

Рис. 3.4. Строение молекул ДНК и РНК (а); (б) - кольцевидная ДНК

Вторичная структура – спирализация полидезоксирибо-нуклеотидной цепи, вернее двух цепей. Выяснение вторичной структуры ДНК – это одно из крупнейших открытий в биологии, так как при этом был раскрыт молекулярный механизм передачи генетической информации в ряду поколений. В 1953 году Д.Уотсон и Ф.Крик установили, что ДНК представляет собой двойную спираль, состоящую из двух антипараллельных полинуклеотидных цепей. Полинуклеотидная цепь расположена в форме спирали с одним оборотом (шагом) 10 пар нуклеотидов, что составляет 3,4 нм и расстоянием между плоскостями оснований 0,34 нм, при этом между амино- и кетогруппами азотистых оснований образуются водородные связи. Две нуклеотидные цепи образуют правую спираль, при этом углеводно-фосфатные группы располагаются снаружи, а азотистые основания – внутри, где аденин первой цепи соединяется двумя водородными связями с тимином второй цепи, а гуанин с цитозином тремя водородными связями. Связь A=T и Г=Ц называется комплементарной. Связь между указанными азотистыми основаниями является строго специфичной. Так, если в одной цепи последовательность нуклеотидов составляет АТГЦ, то во второй цепи будет комплементарно ТАЦГ. Таким образом, последовательность нуклеотидов в одной цепи автоматически определяет последовательность нуклеотидов в другой комплементарной цепи.

Исследования показали, что кроме указанной выше В-формы ДНК (репликативной формы), в зависимости от влажности и ряда других условий, могут быть: А-форма молекулы при транскрипции (1 виток насчитывает 11 пар нуклеотидов, цепь короче на 25%); С-формы надмолекулярных структур (1 виток имеет 9,3 пар оснований), Z-формы (левая спираль, на 1 виток приходится 12 нуклеотидов). Известны и другие формы (бок о бок форма, кольцевидная форма, одноцепочечная и т.д.).

Из физико-химических свойств, кроме большой длины молекулы, следует отметить денатурацию молекулы ДНК, которая происходит при повышении температуры свыше 80 0 C. При этом происходит разрыв водородных связей между азотистыми соединениями, двухцепочечная молекула «расщепляется» на составляющие цепи. Полная денатурация ДНК - это расхождение комплементарных цепей. При охлаждении раствора денатурированной ДНК цепи до комнатной температуры (или несколько ниже 80 0 C) происходит восстановление нативной структуры. Этот прием называется отжигом. Восстановление первоначальной структуры нуклеиновой кислоты называется ренатурацией. Образование двойной спирали ДНК по принципу комплементарности широко применяется для диагностики инфекционных болезней животных методом молекулярной гибридизации, ДНК-зондированию, полимеразной цепной реакции, для генетических исследований. Принцип комплементарности обеспечивается при синтезе новой молекулы ДНК, когда происходит удвоение молекулы - репликация ДНК, что очень важно для передачи генетических особенностей организма (рис.3.5).

М
одель репликации ДНК, предложенная Уотсоном и Криком. Комплементарные цепи родительской ДНК разделяются, и каждая из них служит матрицей для биосинтеза комплементарной дочерней цепи.

Рис.3.5. Модель молекулы ДНК (а), нуклеосом (б).

Третичная структура ДНК и организация хроматина в клетках животных. Молекула ДНК является очень длинной, поэтому в клетке плотно «упакована» путем сверхспирализации с участием белков основного характера. ДНК клетки в основном находится в составе хромосом ядер и лишь небольшая часть ее находится в митохондриях. Суммарный материал хромосом – хроматин – содержит ДНК, гистоны, негистоновые белки и небольшое количество РНК.

До 50% хроматина составляют гистоны. Гистоны богаты основными аминокислотами – аргинином и лизином, на долю которых приходится до 25% аминокислотных остатков белка. Радикалы этих аминокислот при рН 7,0 протонированы (NH 3 +), несут положительный заряд. Гистоны соединяются с отрицательно заряженной (за счет остатка фосфорной кислоты) двухцепочечной ДНК с образованием ДНК-гистонового комплекса. Различают пять видов гистонов: Hl - богатый лизином, Н2А, Н2В - богатые лизином и аргинином, НЗ и Н4 – богатые аргинином. Все гистоны подвергаются модификациям – метилированию, ацетилированию, фосфорилированию и поли-АДФ-рибозилированию. При этом в их молекулах изменяется распределение электронной плотности, что меняет характер их связи с ДНК. Считают, что таким образом осуществляется механизм регуляции активности генов. Упаковка молекулы ДНК начинается с образования нуклеосом. Нуклеосома – это комплекс двухцепочечной молекулы ДНК с гистонами, где около 200 пар нуклеотидов делает два оборота вокруг 8 молекул гистонов (Н2А, Н2В, НЗ и Н4 по две молекулы). Между нуклеосомами расположена соединительная (линкерная) ДНК из 20-120 пар нуклеотидов, связанная с гистоном Hl (рис.3.5.(б)). Нуклеосомы обеспечивают плотную упаковку молекулы ДНК. Они упорядоченно расположены в пространстве и образуют толстые фибриллы в виде соленоидов. Такая упаковка ДНК в хроматине обеспечивает уменьшение линейных размеров ДНК в 10000 раз.

Цитоплазматическая ДНК содержится в митохондриях – 0,1% от общего количества ДНК клетки. Это двухцепочечные кольцевые молекулы, сравнительно небольшого размера (мм ≈10 6). В цитоплазме бактериальных клеток кроме хромосомной ДНК имеются добавочные кольцевидные молекулы ДНК, их называют плазмидами. Плазмиды способны автономно размножаться, стабильно наследуются. Мелкие плазмиды содержат генетическую информацию для 2-3 белков, а крупные могут кодировать до 200 белков. Количество их в клетке может быть различное: мелких – несколько десятков, крупных – 1-2. Плазмиды могут обуславливать вирулентность бактерии, устойчивость к отдельным антибиотикам: тетрациклину, стрептомицину и т.д. Плазмиды широко используются в генетической инженерии.

Молекула ДНК является материальным носителем генетической информации. Геном – это совокупность генов данного организма. Ген (цистрон) – участок ДНК, несущий информацию для синтеза одного белка (полипептида). Различают структурные гены, они кодируют полипептиды и РНК; регуляторные гены выполняют регуляторные функции. Количество генов в одной хромосоме зависит от сложности организма: у мелких вирусов несколько десятков, вируса оспы – около 200, бактериальных клеток несколько тысяч, генома человека около 35000.