Почему ученые считают, что Вселенная началась со взрыва?

Астрономы приводят три очень разные последовательности рассуждений, которые создают прочную основу для данной теории. Давайте рассмотрим их подробнее.

Открытие явления расширения Вселенной . Вероятно, самое убедительное доказательство теории Большого Взрыва вытекает из замечательного открытия, сделанного американским астрономом Эдвином Хабблом в 1929 году. До этого большинство ученых считали Вселенную статичной - неподвижной и не меняющейся. Но Хаббл обнаружил, что она расширяется: группы галактик разлетаются одна от другой, так же как осколки разбрасываются в разных направлениях после космического взрыва (см. раздел "Постоянная Хаббла и возраст Вселенной" в этой главе).

Очевидно, что если какие-то объекты разлетаются, то когда-то они были ближе один к другому. Прослеживая процесс расширения Вселенной назад во времени, астрономы пришли к выводу, что около 12 миллиардов лет назад (плюс-минус несколько миллиардов лет) Вселенная представляла собой невероятно горячее и плотное образование, высвобождение огромной энергии из которого было вызвано взрывом колоссальной силы.

Открытие космического микроволнового фона . В 1940-х годах физик Георгий Гамов понял, что Большой Взрыв должен был породить мощное излучение. Его сотрудники предположили также, что остатки этого излучения, охлажденные в результате расширения Вселенной, могут все еще существовать.

В 1964 году Арно Пенциас и Роберт Вилсон из AT & Т Bell Laboratories , сканируя небо с помощью радиоантенны, обнаружили слабое равномерное потрескивание. То, что они сначала приняли за радиопомехи, оказалось слабым "шелестом" излучения, оставшегося после Большого Взрыва. Это однородное микроволновое излучение, пронизывающее все космическое пространство (его еще называют реликтовым излучением). Температура этого космического микроволнового фона (cosmic microwave background) в точности такая, какой она должна быть по расчетам астрономов (2,73° по шкале Кельвина), если охлаждение происходило равномерно с момента Большого Взрыва. За свое открытие А. Пенциас и Р. Вилсон в 1978 году получили Нобелевскую премию по физике.

Изобилие гелия в космосе . Астрономы обнаружили, что по отношению к водороду количество гелия в космосе составляет 24 %. Причем ядерные реакции внутри звезд (см. главу 11) идут недостаточно долго для того, чтобы создать так много гелия. Но гелия как раз столько, сколько теоретически должно было образоваться во время Большого Взрыва.

Как оказалось, теория Большого Взрыва успешно объясняет явления, наблюдаемые в космосе, но остается только отправной точкой для изучения начального этапа развития Вселенной. Например, эта теория, несмотря на ее название, не выдвигает никаких гипотез об источнике "космического динамита", который и вызвал Большой Взрыв.

  • Перевод

Как характерная черта, основанная на наблюдении космической инфляции, может провозгласить научную революцию века (18 марта 2014 года)

Несмотря на название, Теория большого взрыва – это вообще не теория взрыва. Это теория последствий взрыва.
- Алан Гут

Когда вы представляете себе начало Вселенной, вы, наверно, думаете о горячем, плотном состоянии, наполненном материей и излучением, которое невероятно быстро расширяется и охлаждается (и, кстати, так всё и было). Но чего нельзя сделать – так это экстраполировать назад до произвольно горячего и плотного состояния. Вы можете думать, что без проблем пройдёте назад по времени, до «сингулярности» с бесконечными температурой и плотностью, когда вся энергия Вселенной была сжата в единую точку – но это не соответствует действительности.

Одна из замечательных особенностей Вселенной состоит в том, что излучение, зародившееся в то время, всё ещё существует. Оно претерпевало отражения от заряженных частиц во времена Вселенной, бывшей юной, горячей и ионизированной (а это продлилось в течение 380 000 лет). Когда Вселенная стала электрически нейтральной (когда материя впервые сформировала нейтральные атомы), оставшееся от Большого взрыва излучение устремилось по прямой, не прерываемое этой нейтральной материей.


По мере расширения Вселенной - из-за того, что энергия излучения определяется длиной волны – эти длина волны растягивалась вместе с расширением пространства, а энергия с тех пор весьма сильно упала. Но это очень помогает нам, поскольку даёт материал для наблюдений.

И если бы мы могли увидеть и измерить эти волны, они дали бы нам окошко для заглядывания в раннюю Вселенную! И вот, в 1960-х, Арно Пензиас и Роберт Уилсон обнаружили это остаточное свечение от Большого взрыва – излучение, равномерно идущее во всех направлениях, всего лишь на несколько градусов выше абсолютного нуля – и в нём учёные сразу узнали микроволновое космическое фоновое излучение, которое так долго искали!

Спустя 50 лет мы добились невероятного прогресса. Мы смогли не только измерить энергетический спектр этого излучения, но и измерить присущие ему крошечные флуктуации температуры, а так же их масштабы, их взаимосвязь между собой и как это все относится к эволюции Вселенной.



В частности, мы узнали, как выглядела Вселенная в возрасте 380 000 лет, из чего она сделана, и как взаимодействующая материя повлияла на излучение на его пути к нашим глазам длиною в 13,8 миллиардов лет.

Но есть ещё кое-что, что может дать нам информацию об этих вещах: мы можем изучать не только энергию и температуру света, но и его поляризацию. Дайте-ка я поясню.

По сути, свет – это электромагнитная волна. Значит, он состоит из колеблющихся электрических и магнитных полей, перпендикулярных друг другу, у него есть особая длина волны (определяемая энергией), и он распространяется со скоростью света.

Пролетая мимо заряженных частиц, отражаясь от поверхности, взаимодействуя с другими электромагнитными явлениями, электрические и магнитные поля реагируют с окружающей их средой.

Изначально полученный свет должен быть неполяризованным, но огромное количество вещей приводит к его поляризации самыми разными способами. Иначе говоря, свет, который обычно имеет случайно ориентированные электрические и магнитные поля, может испытать взаимодействия, в результате которых у них появится предпочтительная ориентация. И вот она уже сможет рассказать нам очень много познавательных вещей про то, с кем свет взаимодействовал за свою историю.

Эффект поляризации фонового микроволнового излучения впервые открыли в прошлом десятилетии при помощи спутника WMAP, а от обсерватории «Планк» в будущем ожидают ещё лучших результатов (но этот тип исследований, надо отметить, очень сложен в реализации). Поляризация, благодаря которой свет выглядит «радиальным», называется Е-модой поляризации (для электрических полей), а та, из-за которой свет «закручен», называется B-модой поляризации (для магнитных полей).

Большинство наблюдаемых эффектов произошло из-за миллиардов световых лет материи, которую прошёл насквозь свет; мы называем это «передним планом». Ему пришлось пройти весь путь во всех направлениях со времён эры излучения, чтобы дойти сегодня до наших глаз.

Но крохотная, малюсенькая часть поляризации должна была дойти до нас с более ранних времён. Видите ли, до Большого взрыва – до того, как Вселенную вообще можно было бы описать, как горячую, плотную, и наполненную материей и излучением – Вселенная просто экспоненциально расширялась; это был период космической инфляции. В это время во Вселенной господствовала энергия, присущая самому пустому пространству – энергия в количестве гораздо большем, чем присутствует в ней сегодня.

В это время квантовые флуктуации – присущие самому пространству – растягивались по Вселенной, и обеспечивали изначальные флуктуации плотности, которые породили сегодняшнюю Вселенную.

Но только в регионах, где закончилась инфляция, и где эта энергия, присущая пространству, преобразовывается в материю и излучение, и случается Большой взрыв.

И в этих регионах – где закончилась инфляция – у нас получается Вселенная, гораздо большая, чем наблюдаемый её участок. Это и есть идея мультивселенной, и именно поэтому мы считаем, что, скорее всего, живём в ней.

А что насчёт самой этой инфляции? Можем ли мы что-нибудь узнать о ней?

Вы можете решить, что квантовые флуктуации – и посеянные ими флуктуации плотности – это всё, что у нас есть. И до недавнего времени я бы вам так и сказал. Но в теории инфляция порождает и гравитационные волны, которые мы до сих пор не могли обнаружить. LISA, космическая антенна лазерного интерферометра (проект, отодвинутый в лучшем случае в 2030-е), был нашей лучшей надеждой на прямое обнаружение волн.

Но и без LISA гравитационные волны можно обнаружить непрямым методом. Хотя гравитационные волны и свет передвигаются с одинаковой скоростью, свет замедляется при проходе через среду. Это происходит даже в такой разреженной среде, как межгалактическое и межзвёздное пространство! А поскольку гравитационные волны не замедляются – на них влияет только кривизна пространства-времени – они обгоняют свет и сами приводят к поляризации!

Вообще, именно деформации пространства-времени на определённых масштабах растягивают волны света определённым образом, когда они путешествуют от Большого взрыва и до наших глаз.

Конкретно, характерные признаки гравитационных волн должны проявиться, как B-мода поляризации, и они должны оставить специфический рисунок на больших масштабах.

Хотя в обсерватории «Планк» должны это увидеть и подтвердить, его опередила команда, работающая на Южном полюсе: BICEP2!

На масштабах порядка 1,5 градусов B-мода поляризации весьма очевидна, и её уже объявляли открытой, правда со значимостью 2,7σ (примечание: на данных масштабах значимость составляет 5,2σ, но им надо убедить всех, что этот уровень обнаружения не появился благодаря комбинации переднего плана и систематики). 2,7σ означает, что существует 2% шанс того, что это обнаружение ложное, и исчезнет с получением большего количества данных. Но в мире науки это довольно большая вероятность, поэтому пока не стоит считать это открытие свершившимся фактом.

Если открытие выдержит проверку, это будет весьма серьёзным событием. Именно это нам надо измерить, и не только для того, чтобы узнать, была ли инфляция (скорее всего, она была), но чтобы узнать, какая из моделей инфляции описывает Вселенную?

«Планк», выпустив первые результаты в прошлом году, не обнаружил вообще ничего.

Существует несколько общих типов инфляции, которые могли произойти: в частности, если значение r в указанных графиках окажется равным нулю, это будет в пользу модели «малых полей», а если он окажется чем-то огромным (например, 0,2, судя по этим результатам), это будет доказательством модели «больших полей».

Однозначный ли это результат? Нет. Нам нужна гораздо лучшая статистика, чтобы объявить это открытием – мы не можем принять эти результаты и объявить: «да, это изначальные гравитационные волны, оставшиеся со времени до инфляции», так как нам нужны доказательства получше. 2,7σ – это неплохо, но в жестоком мире физики нам нужен подтверждённый результат в 5σ. Мусорная корзина истории физики полна «открытий» с 3σ, которые исчезли с поступлением новых данных.

Мы знаем, что инфляция была; истоки структуры во Вселенной – её сегодняшний внешний вид, её вид 13,8 миллиардов лет назад, и в любом месте в промежутке – уже рассказал нам об этом. Но есть возможность, и первые намёки, что гравитационные волны также могли остаться. И если выяснится, что мы действительно их увидели, мы должны будем получить подтверждение этому в следующие несколько лет. Но если наблюдение перейдёт в разряд незначительных по мере сбора данных, это не будет означать, что модель инфляции неправильная – только, что не она производит самые сильные B-моды.

Это пока ещё не «открытие», но намёк, что мы могли наткнуться на что-то удивительное: первый намёк на то, как родилась наша Вселенная. Если он окажется верным, это будет открытие столетия. Но если новые данные опровергнут его – что вполне может произойти – это не значит, что модель инфляции неправильная; это значит, что гравитационные волны от инфляции меньше, чем предсказывали самые оптимистичные модели.

Но будет оно реальным или нет, мы всё равно узнаем ещё немного о том, как появилась вся наша Вселенная.

Обновление: в комментариях к оригинальной статье читатели сообщали, что в работе упоминается значимость больше, чем 5σ. В частности, они смотрят на определённый участок угловой шкалы, где они и в самом деле видят сигнал со значимостью в 5.2σ.

Может ли фокусировка быть за это в ответе? Это единственный компонент, который можно вычеркнуть – если я, конечно, правильно понял работу – со значимостью всего лишь в 2.7σ.

Смотрите сами.

Значимость результата не выше, чем у самого вероятного из источников неопределённости, и если даже r и может быть равен нулю, очень важно исключить эту возможность. В работе её, возможно, исключили, но мне не показалось, что это было сделано чётко и ясно. Тем не менее, мне очень интересно, как это всё будет развиваться! Если они исключат фокусировку так же, как и синхротронную эмиссию, ограничение в 5σ будет выполнено, и это уже будет означать Нобелевку!

17 марта 2014 года учёные из Гарвард-Смитсоновского центра астрофизики объявили о обнаружении B-моды на уровне r = 0,2. Однако, более поздний анализ (опубликован 19 сентября 2014), проведённый другой группой исследователей с использованием данных обсерватории «Планк», показал, что результат BICEP2 можно полностью отнести на счёт галактической пыли.

  • Астрономия
    • Перевод

    Как характерная черта, основанная на наблюдении космической инфляции, может провозгласить научную революцию века (18 марта 2014 года)

    Несмотря на название, Теория большого взрыва – это вообще не теория взрыва. Это теория последствий взрыва.
    - Алан Гут

    Когда вы представляете себе начало Вселенной, вы, наверно, думаете о горячем, плотном состоянии, наполненном материей и излучением, которое невероятно быстро расширяется и охлаждается (и, кстати, так всё и было). Но чего нельзя сделать – так это экстраполировать назад до произвольно горячего и плотного состояния. Вы можете думать, что без проблем пройдёте назад по времени, до «сингулярности» с бесконечными температурой и плотностью, когда вся энергия Вселенной была сжата в единую точку – но это не соответствует действительности.

    Одна из замечательных особенностей Вселенной состоит в том, что излучение, зародившееся в то время, всё ещё существует. Оно претерпевало отражения от заряженных частиц во времена Вселенной, бывшей юной, горячей и ионизированной (а это продлилось в течение 380 000 лет). Когда Вселенная стала электрически нейтральной (когда материя впервые сформировала нейтральные атомы), оставшееся от Большого взрыва излучение устремилось по прямой, не прерываемое этой нейтральной материей.


    По мере расширения Вселенной - из-за того, что энергия излучения определяется длиной волны – эти длина волны растягивалась вместе с расширением пространства, а энергия с тех пор весьма сильно упала. Но это очень помогает нам, поскольку даёт материал для наблюдений.

    И если бы мы могли увидеть и измерить эти волны, они дали бы нам окошко для заглядывания в раннюю Вселенную! И вот, в 1960-х, Арно Пензиас и Роберт Уилсон обнаружили это остаточное свечение от Большого взрыва – излучение, равномерно идущее во всех направлениях, всего лишь на несколько градусов выше абсолютного нуля – и в нём учёные сразу узнали микроволновое космическое фоновое излучение, которое так долго искали!

    Спустя 50 лет мы добились невероятного прогресса. Мы смогли не только измерить энергетический спектр этого излучения, но и измерить присущие ему крошечные флуктуации температуры, а так же их масштабы, их взаимосвязь между собой и как это все относится к эволюции Вселенной.



    В частности, мы узнали, как выглядела Вселенная в возрасте 380 000 лет, из чего она сделана, и как взаимодействующая материя повлияла на излучение на его пути к нашим глазам длиною в 13,8 миллиардов лет.

    Но есть ещё кое-что, что может дать нам информацию об этих вещах: мы можем изучать не только энергию и температуру света, но и его поляризацию. Дайте-ка я поясню.

    По сути, свет – это электромагнитная волна. Значит, он состоит из колеблющихся электрических и магнитных полей, перпендикулярных друг другу, у него есть особая длина волны (определяемая энергией), и он распространяется со скоростью света.

    Пролетая мимо заряженных частиц, отражаясь от поверхности, взаимодействуя с другими электромагнитными явлениями, электрические и магнитные поля реагируют с окружающей их средой.

    Изначально полученный свет должен быть неполяризованным, но огромное количество вещей приводит к его поляризации самыми разными способами. Иначе говоря, свет, который обычно имеет случайно ориентированные электрические и магнитные поля, может испытать взаимодействия, в результате которых у них появится предпочтительная ориентация. И вот она уже сможет рассказать нам очень много познавательных вещей про то, с кем свет взаимодействовал за свою историю.

    Эффект поляризации фонового микроволнового излучения впервые открыли в прошлом десятилетии при помощи спутника WMAP, а от обсерватории «Планк» в будущем ожидают ещё лучших результатов (но этот тип исследований, надо отметить, очень сложен в реализации). Поляризация, благодаря которой свет выглядит «радиальным», называется Е-модой поляризации (для электрических полей), а та, из-за которой свет «закручен», называется B-модой поляризации (для магнитных полей).

    Большинство наблюдаемых эффектов произошло из-за миллиардов световых лет материи, которую прошёл насквозь свет; мы называем это «передним планом». Ему пришлось пройти весь путь во всех направлениях со времён эры излучения, чтобы дойти сегодня до наших глаз.

    Но крохотная, малюсенькая часть поляризации должна была дойти до нас с более ранних времён. Видите ли, до Большого взрыва – до того, как Вселенную вообще можно было бы описать, как горячую, плотную, и наполненную материей и излучением – Вселенная просто экспоненциально расширялась; это был период космической инфляции. В это время во Вселенной господствовала энергия, присущая самому пустому пространству – энергия в количестве гораздо большем, чем присутствует в ней сегодня.

    В это время квантовые флуктуации – присущие самому пространству – растягивались по Вселенной, и обеспечивали изначальные флуктуации плотности, которые породили сегодняшнюю Вселенную.

    Но только в регионах, где закончилась инфляция, и где эта энергия, присущая пространству, преобразовывается в материю и излучение, и случается Большой взрыв.

    И в этих регионах – где закончилась инфляция – у нас получается Вселенная, гораздо большая, чем наблюдаемый её участок. Это и есть идея мультивселенной, и именно поэтому мы считаем, что, скорее всего, живём в ней.

    А что насчёт самой этой инфляции? Можем ли мы что-нибудь узнать о ней?

    Вы можете решить, что квантовые флуктуации – и посеянные ими флуктуации плотности – это всё, что у нас есть. И до недавнего времени я бы вам так и сказал. Но в теории инфляция порождает и гравитационные волны, которые мы до сих пор не могли обнаружить. LISA, космическая антенна лазерного интерферометра (проект, отодвинутый в лучшем случае в 2030-е), был нашей лучшей надеждой на прямое обнаружение волн.

    Но и без LISA гравитационные волны можно обнаружить непрямым методом. Хотя гравитационные волны и свет передвигаются с одинаковой скоростью, свет замедляется при проходе через среду. Это происходит даже в такой разреженной среде, как межгалактическое и межзвёздное пространство! А поскольку гравитационные волны не замедляются – на них влияет только кривизна пространства-времени – они обгоняют свет и сами приводят к поляризации!

    Вообще, именно деформации пространства-времени на определённых масштабах растягивают волны света определённым образом, когда они путешествуют от Большого взрыва и до наших глаз.

    Конкретно, характерные признаки гравитационных волн должны проявиться, как B-мода поляризации, и они должны оставить специфический рисунок на больших масштабах.

    Хотя в обсерватории «Планк» должны это увидеть и подтвердить, его опередила команда, работающая на Южном полюсе: BICEP2!

    На масштабах порядка 1,5 градусов B-мода поляризации весьма очевидна, и её уже объявляли открытой, правда со значимостью 2,7σ (примечание: на данных масштабах значимость составляет 5,2σ, но им надо убедить всех, что этот уровень обнаружения не появился благодаря комбинации переднего плана и систематики). 2,7σ означает, что существует 2% шанс того, что это обнаружение ложное, и исчезнет с получением большего количества данных. Но в мире науки это довольно большая вероятность, поэтому пока не стоит считать это открытие свершившимся фактом.

    Если открытие выдержит проверку, это будет весьма серьёзным событием. Именно это нам надо измерить, и не только для того, чтобы узнать, была ли инфляция (скорее всего, она была), но чтобы узнать, какая из моделей инфляции описывает Вселенную?

    «Планк», выпустив первые результаты в прошлом году, не обнаружил вообще ничего.

    Существует несколько общих типов инфляции, которые могли произойти: в частности, если значение r в указанных графиках окажется равным нулю, это будет в пользу модели «малых полей», а если он окажется чем-то огромным (например, 0,2, судя по этим результатам), это будет доказательством модели «больших полей».

    Однозначный ли это результат? Нет. Нам нужна гораздо лучшая статистика, чтобы объявить это открытием – мы не можем принять эти результаты и объявить: «да, это изначальные гравитационные волны, оставшиеся со времени до инфляции», так как нам нужны доказательства получше. 2,7σ – это неплохо, но в жестоком мире физики нам нужен подтверждённый результат в 5σ. Мусорная корзина истории физики полна «открытий» с 3σ, которые исчезли с поступлением новых данных.

    Мы знаем, что инфляция была; истоки структуры во Вселенной – её сегодняшний внешний вид, её вид 13,8 миллиардов лет назад, и в любом месте в промежутке – уже рассказал нам об этом. Но есть возможность, и первые намёки, что гравитационные волны также могли остаться. И если выяснится, что мы действительно их увидели, мы должны будем получить подтверждение этому в следующие несколько лет. Но если наблюдение перейдёт в разряд незначительных по мере сбора данных, это не будет означать, что модель инфляции неправильная – только, что не она производит самые сильные B-моды.

    Это пока ещё не «открытие», но намёк, что мы могли наткнуться на что-то удивительное: первый намёк на то, как родилась наша Вселенная. Если он окажется верным, это будет открытие столетия. Но если новые данные опровергнут его – что вполне может произойти – это не значит, что модель инфляции неправильная; это значит, что гравитационные волны от инфляции меньше, чем предсказывали самые оптимистичные модели.

    Но будет оно реальным или нет, мы всё равно узнаем ещё немного о том, как появилась вся наша Вселенная.

    Обновление: в комментариях к оригинальной статье читатели сообщали, что в работе упоминается значимость больше, чем 5σ. В частности, они смотрят на определённый участок угловой шкалы, где они и в самом деле видят сигнал со значимостью в 5.2σ.

    Может ли фокусировка быть за это в ответе? Это единственный компонент, который можно вычеркнуть – если я, конечно, правильно понял работу – со значимостью всего лишь в 2.7σ.

    Смотрите сами.

    Значимость результата не выше, чем у самого вероятного из источников неопределённости, и если даже r и может быть равен нулю, очень важно исключить эту возможность. В работе её, возможно, исключили, но мне не показалось, что это было сделано чётко и ясно. Тем не менее, мне очень интересно, как это всё будет развиваться! Если они исключат фокусировку так же, как и синхротронную эмиссию, ограничение в 5σ будет выполнено, и это уже будет означать Нобелевку!

    17 марта 2014 года учёные из Гарвард-Смитсоновского центра астрофизики объявили о обнаружении B-моды на уровне r = 0,2. Однако, более поздний анализ (опубликован 19 сентября 2014), проведённый другой группой исследователей с использованием данных обсерватории «Планк», показал, что результат BICEP2 можно полностью отнести на счёт галактической пыли.

    Это открытие наука ждет уже более 100 лет. Когда-то в своей теории относительности Альберт Эйнштейн предсказал существование гравитационных волн. Но поймать их никак не удавалось. Под них строились специальные установки, однако "зверь" не попался в "ловушки". И вот международная команда ученых объявила на весь мир - есть! Правда, попались не сами волны, а их след. Он зафиксирован с помощью телескопа BICEP2, размещенного в Антарктиде.

    Это не только первая в мире регистрация следа гравитационных волн, но и очень весомое доказательство теории Большого взрыва, - сказал корреспонденту "РГ" доктор физико-математических наук, главный научный сотрудник Государственного астрономического института им. Штейнберга Михаил Сажин. - Дело в том, что в нынешней Вселенной гравитационные волны относятся к очень слабым взаимодействиям, например, все планеты Солнечной системы генерируют гравитационные волны общей мощностью 1 киловатт. Это мизер. Именно поэтому они и не регистрируются даже самой современной техникой. А в теории Большого взрыва показано, что в ранней Вселенной гравитационные волны должны были иметь очень большую мощность. Именно их и удалось сейчас обнаружить астрофизикам, что, конечно, сразу стало мировой сенсацией.

    След гравитационных волн запечатлен на так называемом реликтовом излучении, за открытие и исследования которого были присуждены две Нобелевские премии - в 1978 и 2006 годах. Оно тоже было предсказано теорией и стало одним из доказательств Большого взрыва. Но ученых не устраивал его возраст. Это излучение сформировалось примерно через 300 тысяч лет после взрыва, а ученым хотелось подобраться поближе к моменту рождения Вселенной.

    Возраст рисунка, на котором виден след гравитационных волн, равен возрасту Вселенной, он появился через 10 в минус 34 степени секунды после Большого взрыва, - говорит Михаил Сажин. - На рисунке можно видеть, как гравитационные волны особым образом поляризуют реликтовое излучение.

    Надо отметить, что далеко не все ученые вообще верят в существование гравитационных волн. Поэтому наверняка сенсационное открытие астрофизиков будет встречено многими скептически. Сами авторы прекрасно это осознают. Не случайно целых три года перепроверяли свои результаты. По их словам, сейчас вероятность ошибки составляет один шанс на 3,5 миллиона. Но для абсолютной достоверности и признания международным сообществом надо подтверждение других экспериментаторов. И если окажется, что открытие действительно сделано, то оно с высокой вероятностью будет претендовать на Нобелевскую премию.


    Появление вселенной! Международная группа ученых получила экспериментальное подтверждение теории Большого взрыва. Им удалось в ходе опытов со столкновением частиц -воссоздать первые мгновения зарождения Вселенной: Согласно теории, в течение нескольких микросекунд после Большого взрыва произошел мощный скачок температуры, при которой материя существовала в виде плазмы - хаотичного движения фундаментальных частиц. Эти частицы называются кварками (это базовые "кирпичики" мироздания + глюоны - нейтральные частицы, которые сцепляют кварки между собой). После падения температуры глюоны соединили кварки в протоны и нейтроны, те образовали ядра и атомы. Во время экспериментов специалисты смогли воссоздать плазму материи, предположительно образовавшуюся после взрыва. В частности, они сталкивали ядра атомов золота на скорости, близкой к скорости света. В итоге температура в зоне эксперимента повысилась до двух триллионов градусов, что в 300 млн раз превышает температуру поверхности Солнца. Было отмечено также и исчезновение одного из сталкиваемых потоков ядер. Как считают ученые, ядра распались на невидимые кварки, существовавшие доли секунды.



    Ученые считают, что жизнь на Земле зародилась на 300 млн лет раньше, чем предполагают. Ученые считают, что жизнь на Земле зародилась на 300 млн лет раньше, чем предполагают. Жизнь на Земле появилась на 300 млн лет раньше, чем предполагают специалисты, обнаружившие следы жизни в осколке каменной гряды, находящейся в 150 км от главного города острова Гренландия - Нуука. Жизнь на Земле появилась на 300 млн лет раньше, чем предполагают специалисты, обнаружившие следы жизни в осколке каменной гряды, находящейся в 150 км от главного города острова Гренландия - Нуука. Возраст камня оценивается в четыре млрд лет. Ученые намерены доказать, что жизнь на Земле в форме морских водорослей появилась гораздо ранее, чем это зафиксировано сейчас специалистами в области геологии. Возраст камня оценивается в четыре млрд лет. Ученые намерены доказать, что жизнь на Земле в форме морских водорослей появилась гораздо ранее, чем это зафиксировано сейчас специалистами в области геологии.


    Американские ученые обнаружили свидетельства того, что 380 млн. лет назад наша планета столкнулась с неизвестным космическим телом, в результате чего погибло 40% всех обитателей океана. Как сообщила группа исследователей - это тело могло быть кометой или астероидом. И врезалось оно в Землю в том месте, где сейчас находится марокканская часть пустыни Сахары. По словам ученых, открытие является еще одним подтверждением теории, что эволюционное развитие на Земле происходило во многом под воздействием космических "пришельцев" - комет и астероидов. После столкновения с ними погибали одни организмы и образовывались новые. Подобные катаклизмы, как считается, происходили еще несколько раз миллионов, 200 миллионов и 65 миллионов лет назад. Место падения астероида 65 миллионов лет назад также известно - это полуостров Юкатан в Мексике. Тогда погибло около 75% живых существ на планете, в том числе и динозавры. По словам ученых, открытие было сделано в ходе изучения в марокканской пустыне каменистых пластов девонского периода. Ископаемые остатки позволяют также сделать однозначный вывод - катастрофа привела к образованию новых организмов. Ученые доказали, что развитие Земли изменили гигантские метеориты


    Тайну происхождения жизни раскроют глубоководные микроорганизмы Работы ученых по расшифровке генома микроорганизмов, обитающих в гидротермальных источниках на океанском дне, - это весомый вклад в изучение вопросов зарождения и эволюции жизни на планете. Эти работы направлены на изучение вопросов существования на планете, эволюционных и адаптационных проблем. Ученые впервые предпринимают попытку расшифровать ген этих уникальных микроорганизмов, которые, по мнению ряда экспертов, являются древнейшими обитателями на планете и могли возникнуть около 4 миллиардов лет назад.


    Ученые оживили древнейшую бактерию. Американским ученым удалось оживить бактерию, обнаруженную в куске соли возрастом 250 млн. лет. Бактерия была найдена в небольшой капле воды, которая уцелела внутри кристалла соли. Эта находка была сделана на глубине около 500 м недалеко от города Карлсбада в штате Нью-Мексико. Сейчас проводится уточнение возраста бактерии. Некоторые ученые не исключают возможности того, что микроорганизм попал в недра кристалла вместе с просочившейся в него позднее водой. Если возраст бактерии подтвердиться, то она станет самым древним представителем жизни на земле, который когда- либо оживляли ученые. Ранее исследователям удалось вернуть к жизни бактерию, споры которой были обнаружены во внутренностях пчелы из куска янтаря, сформировавшегося от 25 до 30 млн. лет назад. По мнению ряда ученых, нынешняя находка подтверждает гипотезу о внеземном происхождении жизни на Земле. Тот факт, что бактерия может выйти из анабиоза через 250 млн. лет, доказывает, что микроорганизмы могли бы выдержать космическое путешествие и появиться на нашей планете вместе с метеоритами.


    Вселенная погибнет через 20 млрд лет из-за "большого взрыва", полагают американские ученые Вселенная, возникшая 13,7 млрд лет назад в результате Большого взрыва, прекратит свое существование примерно через 20 млрд лет из-за последствий того же Большого взрыва. Такую гипотезу выдвинула группа американских астрофизиков, основываясь на последних результатах космических исследований. Американские ученые считают, что процесс расширения пространства будет продолжаться с нарастающим ускорением под воздействием загадочной темной энергии, занимающей, согласно последним открытиям, около 73 процентов от всей массы Вселенной. В результате этого катастрофического процесса не только все космические объекты начнут разлетаться все дальше друг от друга, но и будут преодолены силы ядерного взаимодействия. По словам одного из ученого, "расширение станет таким быстрым, что буквально разорвет на части" галактики, звезды, Солнечную систему, планеты. "В конце концов оно разорвет и материю", - обещает ученый. "Мы не знаем, что будет после этого, - говорит он. - Но это будет выглядеть как конец времени".