Через мембрану должны проходить молекулы разных веществ. Они могут быть растворимыми в воде (гидрофильными) или в жи­рах (гидрофобными), заряженными (ионы К + , Na + , NO - 3 , Са 2+) или незаряженными (СО 2 , О 2 , Н 2 О, аминокислоты, сахара), большими (белки, полисахариды) или маленькими.

Поскольку внутренняя часть липидного бислоя мембраны - гидрофобна, она представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру вещества, растворимые в воде, не могут выйти из клетки. Однако клетка должна получать необходимые питательные вещест­ва и освобождаться от ненужных.

Трудности транспорта веществ через мембраны связаны еще с тем, что многие элементы минерального питания клетка поглощает в ионной форме, а мембраны имеют электрический заряд. Напри­мер, внутренняя сторона плазмалеммы заряжена отрицательно по отношению к наружному раствору. Это помогает прохождению в протопласт положительно заряженных ионов и препятствует посту­плению отрицательно заряженных. Тонопласт, наоборот, имеет по­ложительный заряд.

Если транспортируемая молекула не заряжена, то направление ее движения определяется только разностью концентраций этого вещества по обеим сторонам мембраны (градиентом концентра­ции): молекулы передвигаются в сторону их меньшей концентра­ции. Однако если молекула заряжена, то на ее транспорт влияет и разница электрических потенциалов на сторонах мембраны (элек­трический градиент). Вместе концентрационный и электрический градиенты составляют электрохимический градиент.

Кроме того, ионы окружены водной оболочкой, увеличивающей их диаметр. Так, например, радиус негидратированного иона калия составляет 0,133 нм, а притяжение водных молекул увеличивает его до 0,34 нм. В результате для всех ионов, независимо от их разме­ров, мембраны оказываются в значительной степени непроницае­мыми.

Часто концентрация веществ в клетке больше, чем в свободном пространстве, поэтому вещество должно двигаться против электро­химического градиента. Для такого транспорта нужна энергия. Транспорт веществ через мембрану без затраты энергии, по градиенту электрохимического потенциала называется пассив­ным, а транспорт, идущий против электрохимического потенциала с затратой энергии, вьделяющейся в процессе метаболизма (АТФ), - активным.

Диффузия - пассивный транспорт, она происходит по градиенту электрохимического потенциала без траты энергии. Малые неполярные молекулы, такие как кислород, легко рас­творяются в липидных бислоях и поэтому быстро проходят через мембрану. Незаряженные полярные молекулы также диффундиру­ют с большой скоростью, если они достаточно малы, например углекислый газ (44 Да), этанол (46 Да), мочевина (60 Да). Они про­скакивают через отверстия, которые образуются между колеблю­щимися «хвостами» липидных молекул.

Чтобы диффузия шла долго и увеличение кон­центрации вещества в клетке не остановило ее, молекула вошедшего в цитоплазму вещества должна так измениться с помо­щью химической реакции, чтобы мембрана стала для нее непрони­цаемой. Например, в клетках некоторых бактерий сахара после пе­реноса через плазматическую мембрану фосфорилируются. В результате они становятся заряженными, не могут выйти из клетки и накапливаются в ней.

Маленькие водорастворимые молекулы (сахара, аминокислоты, нуклеотиды) через гидрофобный бислой мембраны переносят спе­циальные белки, которые называют мембранными транспортными белками. Каждый белок переносит только определенную молекулу или гpyппу похожих молекул, т. е. эти белки относительно специ­фичны. Таким способом обеспечивается избирательность поглоще­ния веществ клеткой.

Существуют два типа мембранных транспортных белков - бел­ ки-переносчики и каналообразующие белки.

Белки-переносчики .- Работа белков-переносчиков напоминает работу фермента, но переносимое вещество при этом не изменяет­ся. Транс­портный белок соединяется с молекулой или ионом переносимого вещества по принципу комплементарности (пространственное соответствие поверхностей взаимодействующих молекул или их частей, приводящее к образованию между ними вто­ричных связей (водородных, ионных и др.)).

Белки-переносчики транспортируют вещества через мембраны как по градиенту электрохимического потенциала, так и против этого градиента. Транспорт растворенных веществ через мембрану по градиенту электрохимического потенциала с помощью перенос­чика называется облегченной диффузией.

Специальные белки, находящиеся в мембране и транс­портирующие через нее растворенные вещества против градиента электрохимического потенциала с использованием энергии, осво­бождаемой, например, при гидролизе АТФ, получили название ионных насосов.

Перенос транспортными белками одного вещества через мем­брану называют унипортом, а одновременный перенос двух ве­ществ - котранспортом. Если два вещества транспортируются че­рез мембрану одновременно в одном направлении, то такой транс­порт называется симпортом, если в разных направлениях, то - ан­ типортом

Каналообразующие белки образуют в мембранах ка­налы, пронизывающие липидный бислой и заполненные водой. Наружная поверхность этих каналов гидрофобна, а внутренняя - гидрофильна; диаметр канала - 0,5-0,8 нм. Веще­ства проходят через каналы, не контактируя с гидрофобной частью мембраны. Практически все каналы служат для транспорта ионов, поэтому их называют ионными каналами . Внастоящее время известно около 50 видов этих каналов. Наиболее распространенными явля­ются каналы, проницаемые для ионов калия, кальция. Ионные каналы могут открываться и закрываться.

Транспортные белки переносят через мембраны полярные мо­лекулы небольшого размера. Для транспорта крупных молекул, на­пример белков, полинуклеотидов, полисахаридов, существуют дру­гие механизмы - эндоцитоз и экзоцитоз.

Вещество сначала адсорбируется на мембране, этот небольшой уча­сток мембраны впячивается (инвагинируется) и окружает погло­щаемое вещество, образуя транспортный пузырек, или везикулу. В зависимости от размера образующихся пузырьков различают два типа эндоцитоза: пиноцитоз и фагоцитоз. Пиноцитозом назы­вается поглощение жидкости и растворенных веществ с помощью маленьких пузырьков (150 нм в диаметре). Фагоцитоз - это погло­щение больших частиц, таких как микроорганизмы или части раз­рушенных клеток; в этом случае образуются крупные пузырьки, называемые фагосомами.

Не только белки переносят вещества через мембраны. Эту роль могут выполнять небольшие гидрофобные молекулы, которые рас­творяются в липидных бислоях- ионофоры. Ионофоры не связаны ни с какими источниками энергии, по­этому с их помощью ионы передвигаются только пассивно, по гра­диентам электрохимических потенциалов.

БИОФИЗИКА ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ.

Вопросы для самопроверки

1. Какие объекты включает в себя инфраструктура автотранспортного комплекса?

2. Назовите основные компоненты загрязнения окружающей среды автотранспортным комплексом.

3. Назовите основные причины формирования загрязнения окружающей среды автотранспортным комплексом.

4. Назовите источники, опишите механизмы образования и дайте характеристику составу загрязнений атмосферы производственными зонами и участками предприятий автомобильного транспорта.

5. Приведите классификацию сточных вод предприятий автомобильного транспорта.

6. Назовите и дайте характеристику основным загрязнениям сточных вод предприятий автомобильного транспорта.

7. Охарактеризуйте проблему отходов производственной деятельности предприятий автомобильного транспорта.

8. Дайте характеристику распределению массы вредных выбросов и отходов АТК по их видам.

9. Проанализируйте вклад объектов инфраструктуры АТК в загрязнение окружающей среды.

10. Какие виды нормативов составляют систему природоохранных нормативов. Дайте характеристику каждому из этих видов нормативов.

1. Бондаренко Е.В. Экологическая безопасность автомобильного транспорта: учебное пособие для вузов / Е.В. Бондаренко, А.Н. Новиков, А.А. Филиппов, О.В. Чекмарёва, В.В. Васильева, М.В. Коротков // Орёл: ОрёлГТУ, 2010. – 254 с. 2. Бондаренко Е.В. Дорожно-транспортная экология: [Текст]: учеб. пособие / Е.В. Бондаренко, Г.П. Дворников Оренбург: РИК ГОУ ОГУ, 2004. – 113 с. 3. Каганов И.Л. Справочник по санитарии и гигиене на автотранспортных предприятиях. [Текст] / И.Л. Каганов, В.Д.Морошек Мн.: Беларусь, 1991. – 287 с. 4. Картошкин А.П. Концепция сбора и переработки отработанных смазочных масел / А.П. Картошкин // Химия и технология топлив и масел, 2003. - №4. – С. 3 – 5. 5. Луканин В.Н. Промышленно-транспортная экология [Текст] / В.Н. Луканин, Ю.В. Трофименко М.: Высш. шк., 2001. - 273 с. 6. Российская автотранспортная энциклопедия. Техническая эксплуатация, обслуживание и ремонт автотранспортных средств. – Т.3. – М.: РБООИП «Просвещение», 2001. – 456 с.

Клетка - открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Мембрана клетки является избирательным барьером для различных веществ, находящихся внутри и снаружи клетки. Существует два вида мембранного транспорта: пассивный и активный транспорт.



Все виды пассивного транспорта основаны на принципе диффузии. Диффузия является результатом хаотических независимых движений многих частиц. Диффузия постепенно уменьшает градиент концентрации до тех пор, пока не наступит состояние равновесия. При этом в каждой точке установится равная концентрация, и диффузия в обоих направлениях будет осуществляться в равной степени.Диффузия является пассивным транспортом, поскольку не требует затрат внешней энергии. Существует несколько видов диффузии в плазматической мембране:

1 ) Свободная диффузия.

Барьерно-транспортная функция поверхностного аппарата клетки обе­спечивается избирательным переносом ионов, молекул и надмолекулярных структур в клетку и из нее. Транспорт через мембраны обеспечивает доставку питательных веществ и удаление ко­нечных продуктов обмена из клетки, секрецию, создание ионных градиентов и трансмембранного потенциала, под­держание в клетке необходимых значе­ний pH и др.

Механизмы транспорта веществ в клетку и из нее зависят от химиче­ской природы переносимого вещества и его концентрации по обе стороны клеточной мембраны, а также от разме­ров транспортируемых частиц. Малые молекулы и ионы транспортируются через мембрану путем пассивного или активного транспорта. Пере­нос макромолекул и крупных частиц осуществляется посредством транспор­та в «мембранной упаковке», то есть за счет образования окруженных мембра­ной пузырьков.

Пассивным транспортом называет­ся перенос веществ через мембрану по градиенту их концентрации без затра­ты энергии. Такой транспорт осущест­вляется посредством двух основных механизмов: простой диффузии и об­легченной диффузии.

Путем простой диффузии транспор­тируются малые полярные и неполяр­ные молекулы, жирные кислоты и дру­гие низкомолекулярные гидрофобные органические вещества. Транспорт мо­лекул воды через мембрану, осущест­вляемый путем пассивной диффузии, получил название осмоса. Примером простой диффузии служит транспорт газов через плазматическую мембрану эндотелиальных клеток кровеносных капилляров в окружающую их ткане­вую жидкость и обратно.

Гидрофильные молекулы и ионы, не способные самостоятельно прохо­дить через мембрану, транспортируются с помощью специфических мембранных транспортных белков. Такой механизм транспорта получил назва­ние облегченной диффузии.

Существуют два основных клас­са мембранных транспортных белков: белки-переносчики и белки-каналы. Молекулы переносимого вещества, связы­ваясь с белком-переносчиком, вызыва­ют его конформационные изменения, результатом чего служит перенос ука­занных молекул через мембрану. Об­легченная диффузия отличается высо­кой избирательностью по отношению к транспортируемым веществам.

Белки-каналы формируют запол­ненные водой поры, пронизывающие липидный бислой. Когда эти поры от­крыты, неорганические ионы или мо­лекулы транспортируемых веществ проходят сквозь них и таким образом переносятся через мембрану. Ионные каналы обеспечивают перенос при­мерно 10 6 ионов в секунду, что более чем в 100 раз превышает скорость транспорта, осуществляемого белками-переносчиками.

Большинство белков-каналов име­ет «ворота», которые открываются на короткое время, а затем закрываются. В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом называ­ется перенос веществ через мембрану против их градиентов концентрации. Он осуществляется с помощью белков-переносчиков и требует затрат энергии, основным источником которой служит АТФ.

Примером активного транспорта, использующего энергию гидролиза АТФ для перекачки ионов Na + и К + че­рез мембрану клетки, служит работа натриево-калиевого насоса , обеспечи­вающего создание мембранного по­тенциала на плазматической мембране клеток.

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ. В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

В зависимости от способности транспортных белков переносить один или несколько видов молекул и ионов пассивный и активный транспорт под­разделяются на унипорт и копорт, или сопряженный транспорт.

Унипорт - это транспорт, при кото­ром белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте, или сопря­женном транспорте, белок-переносчик способен транспортировать одновре­менно два или более видов молекул или ионов. Такие белки-переносчики получили название копортеров , или сопряженных переносчиков. Различают два вида копорта: симпорт и антипорт. В случае симпорта молекулы или ионы транспортируются в одном направле­нии, а при антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов. Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки. В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Благодаря избирательному транс­порту заряженных ионов плазмалемма почти всех клеток несет на своей наруж­ной стороне положительный, а на вну­тренней цитоплазматической стороне - отрицательный заряды. В результате этого между обеими сторонами мембра­ны создается разность потенциалов.

Формирование трансмембранного потенциала достигается в основном за счет работы встроенных в плазмалемму транспортных систем: натриево­калиевого насоса и белков-каналов для ионов К + .

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + - каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов. Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

Транспортные белки, которые ге­нерируют разность потенциалов на мембране, называются электрогенными насосами. Натриево-калиевый насос служит главной электрогенной помпой клеток.

Транспорт в мембранной упаковке характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной. В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом называется процесс поглощения клеткой макромолекул и более крупных частиц (вирусов, бак­терий, фрагментов клеток). Эндоцитоз осуществляется путем фагоцитоза и пиноцитоза.

Фагоцитоз - процесс активного за­хвата и поглощения клеткой твердых микрочастиц, размер которых состав­ляет более 1 мкм (бактерий, фрагмен­тов клеток и др.). В ходе фагоцитоза клетка с помощью специальных ре­цепторов распознает специфические молекулярные группировки фагоци­тируемой частицы.

Затем в месте кон­такта частицы с мембраной клетки образуются выросты плазмалеммы - псевдоподии, которые обволакивают микрочастицу со всех сторон. В резуль­тате слияния псевдоподий такая части­ца оказывается заключенной внутри пузырька, окруженного мембраной, который называется фагосомой. Обра­зование фагосом - энергозависимый процесс и протекает с участием актомиозиновой системы. Фагосома, погру­жаясь в цитоплазму, может сливаться с поздней эндосомой или лизосомой, в результате чего поглощенная клеткой органическая микрочастица, например бактериальная клетка, переваривает­ся. У человека к фагоци­тозу способны только немногие клетки: например, макрофаги соединительной ткани и лейкоциты крови. Эти клетки поглощают бактерии, а также разнооб­разные твердые частицы, попавшие в организм, и тем самым защищают его от болезнетворных микроорганизмов и посторонних частиц.

Пиноцитоз - поглощение клеткой жидкости в виде истинных и коллоид­ных растворов и суспензий. Этот про­цесс в общих чертах сходен с фагоцито­зом: капля жидкости погружается в об­разовавшееся углубление клеточной мембраны, окружается ею и оказывает­ся заключенной в пузырек диаметром 0,07-0,02 мкм, погруженный в гиало­плазму клетки.

Механизм пиноцитоза весьма сло­жен. Этот процесс осуществляется в специализированных областях по­верхностного аппарата клетки, назы­ваемых окаймленными ямками, ко­торые занимают около 2% клеточной поверхности. Окаймленные ямки пред­ставляют собой небольшие впячивания плазмалеммы, рядом с которыми в пе­риферической гиалоплазме находится большое количество белка клатрина. В области окаймленных ямок на по­верхности клеток располагаются также многочисленные рецепторы, способные специфически распознавать и связы­вать транспортируемые молекулы. При связывании рецепторами указанных молекул происходит полимеризация клатрина, и плазмалемма впячивается. В результате образуется окаймленный пузырек, несущий в себе транспортируе­мые молекулы. Свое название такие пу­зырьки получили благодаря тому, что клатрин на их поверхности под элек­тронным микроскопом выглядит как неровная каемка. После отделения от плазмалеммы окаймленные пузырьки теряют клатрин и приобретают способ­ность сливаться с другими пузырьками. Процессы полимеризации и деполи­меризации клатрина требуют затрат энергии и блокируются при недостатке АТФ.

Пиноцитоз, благодаря высокой кон­центрации рецепторов в окаймленных ямках, обеспечивает избирательность и эффективность транспорта специфи­ческих молекул. Например, концен­трация молекул транспортируемых ве­ществ в окаймленных ямках в 1000 раз превышает концентрацию их в окру­жающей среде. Пиноцитоз - основной способ транспорта в клетку белков, ли­пидов и гликопротеинов. Посредством пиноцитоза клетка поглощает за сутки количество жидкости, равное своему объему.

Экзоцитоз - процесс выведения веществ из клетки. Вещества, подлежа­щие выведению из клетки, сначала за­ключаются в транспортные пузырьки, наружная поверхность которых, как правило, покрыта белком клатрином, затем такие пузырьки направляются к клеточной мембране. Здесь мембрана пузырьков сливается с плазмалеммой, а содержимое их изливается за пределы клетки либо, сохраняя связь с плазма­леммой, включается в гликокаликс.

Существуют два типа экзоцитоза: кон­ститутивный (основной) и регулируемый.

Конститутивный экзоцитоз непре­рывно протекает во всех клетках орга­низма. Он служит основным механиз­мом выведения из клетки продуктов метаболизма и постоянного восстанов­ления клеточной мембраны.

Регулируемый экзоцитоз осущест­вляется лишь в специальных клетках, выполняющих секреторную функцию. Выделяемый секрет накапливается в секреторных пузырьках, а экзоцитоз происходит только после получения клеткой соответствующего химическо­го или электрического сигнала. Напри­мер, β-клетки островков Лангерганса пожелудочной железы выделяют свой секрет в кровь лишь при повышении в крови концентрации глюкозы.

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой. При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , - это транспорт, при котором происходит пе­ренос отдельных молекул через клетку. Указанный вид транспорта достигается за счет сочетания эндо- и экзоцитоза. Примером трансцитоза служит транс­порт веществ через клетки сосудистых стенок капилляров человека, который может осуществляться как в одном, так и в другом направлениях.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия - проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К- Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ. В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+. мембрана клетка диффузия ионный

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоцитозе (эндо … - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо … - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

  • · барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • · транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов. Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • · матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • · механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • · энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • · рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • · ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • · осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

БИОЛОГИЧЕСКИЕ МЕМБРАНЫ

Градиент концентрации (от лат. gradi, gradu, gradus - ход, движение, течение, приближение; con - с, вместе, совместно + centrum - центр) или концентрационный градиент - это векторная физическая величина , характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделенные полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Активный транспорт - перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ .

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Пассивный транспорт - перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия , осмос ). Диффузия - пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос - пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт .

Простая диффузия

При простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO 2 , H 2 O, мочевина ). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Облегченная диффузия

Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегченной диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегченной диффузии по сравнению с простой пассивной диффузией. Скорость облегченной диффузии зависит от ряда причин: от трансмембранного концентрационного градиента переносимого вещества, от количества переносчика, который связывается с переносимым веществом, от скорости связывания вещества переносчиком на одной поверхности мембраны (например, на наружной), от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны. Облегченная диффузия не требует специальных энергетических затрат за счет гидролиза АТФ. Эта особенность отличает облегченную диффузию от активного трансмембранного транспорта.

Белки-переносчики

Белки-переносчики - это трансмембранные белки, которые специфически связывают молекулу транспортируемого вещества и, изменяя конформацию, осуществляют перенос молекулы через липидный слой мембраны. В белках-переносчиках всех типов имеются определенные участки связывания для транспортируемой молекулы. Они могут обеспечивать как пассивный, так и активный мембранный транспорт.

Все живые клетки отделены от окружающей среды поверхностью называемой клеточной мембраной. Кроме того, для эукариотов характерно образование внутри клеток нескольких компартментов. Они представлены рядом субклеточных органелл, ограниченных мембранами, например, ядро и митохондрии. Мембраны представляют собой не только статически организованные поверхности раздела, но и включают активные биохимические системы, отвечающие за такие процессы, как избирательный транспорт веществ внутрь и наружу клетки, связывание гормонов и других регуляторных молекул, протекание ферментативных реакций, передача импульсов нервной системы и т.д. Существуют различные типы мембран, отличающиеся по выполняемым функциям. Функции мембран обусловлены их строением.

Функции мембран

Химический состав

Мембраны состоят из липидных и белковых молекул, относительное количество которых варьирует (от 1/5 - белок + 4/5 - липиды до 3/4 - белок + 1/4 – липиды) у разных мембран. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5-10% вещества мембраны.

Липиды мембран

Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином. Строение этих липидов представлено на рисунке:

Строение липидов мембран

Липиды мембран имеют в структуре две различные части: неполярный гидрофобный «хвост» и полярную гидрофильную «голову». Такую двойственную природу соединений называют амфифильной. Липиды мембран образуют двухслойную структуру. Каждый слой состоит из сложных липидов, расположенных таким образом, что неполярные гидрофобные «хвосты» молекул находятся в тесном контакте друг с другом. Так же контактируют гидрофильные части молекул. Все взаимодействия имеют нековалентный характер. Два монослоя ориентируются «хвост к хвосту» так, что образующаяся структура двойного слоя имеет внутреннюю неполярную часть и две полярные поверхности. Белки мембран включены в липидный двойной слой двумя способами:

    связаны с гидрофильной поверхностью липидного бислоя - поверхностные мембранные белки

    погружены в гидрофобную область бислоя - интегральные мембранные белки.

Поверхностные белки своими гидрофильными радикалами аминокислот связаны нековалентными связями с гидрофильными группами липидного бислоя. Интегральные белки различаются по степени погруженности в гидрофобную часть бислоя. Они могут располагаться по обеим сторонам мембраны и либо частично погружаются в мембрану, либо прошивают мембрану насквозь. Погруженная часть интегральных белков содержит большое количество аминокислот с гидрофобными радикалами, которые обеспечивают гидрофобное взаимодействие с липидами мембран. Гидрофобные взаимодействия поддерживают определенную ориентацию белков в мембране. Гидрофильная выступающая часть белка не может переместиться в гидрофобный слой. Часть мембранных белков ковалентно связаны с моносахаридными остатками или олигосахаридными цепями и представляют собой гликопротеины. Примеры расположения белков и липидов в мембране представлены на рисунке:

Структура плазматической мембраны

Асимметрия мембран

Хотя каждый монослой образован из липидов, ориентированных одинаковым образом, тем не менее, липидный состав монослоев различен. Например, в плазматической мембране эритроцитов фосфатидилхолины преобладают в наружном слое, а фосфатидилсерины во внутреннем слое мембраны. Углеводные части белков и липидов располагаются на наружной части мембраны. Кроме того, поверхности мембраны отличаются по составу белков. Степень такой асимметрии мембран различна у разных типов мембран и может меняться в процессе жизнедеятельности клетки и ее старения. Подвижность (жесткость) и текучесть мембран также зависят от ее состава. Повышенная жесткость обуславливается увеличением соотношения насыщенных и ненасыщенных жирных кислот, а также холестерина. Физические свойства мембран зависят от расположения белков в липидном слое. Липиды мембран способны к диффузии в пределах слоя параллельно поверхности мембраны (латеральная диффузия). Белки тоже способны к латеральной диффузии. Поперечная диффузия в мембранах сильно ограничена.

Мембранный транспорт

Транспорт веществ внутрь и наружу клетки, а также между цитоплазмой и различными субклеточными органеллами (митохондриями, ядром и т.д.) обеспечивается мембранами. Если бы мембраны были глухим барьером, то внутриклеточное пространство оказалось бы недоступным для питательных веществ, а продукты жизнедеятельности не могли бы быть удалены из клетки. В то же время при полной проницаемости было бы невозможно накопление определенных веществ в клетке. Транспортные свойства мембраны характеризуются полупроницаемостью : некоторые соединения могут проникать через нее, а другие - нет:

Проницаемость мембран для различных веществ

Одна из главных функций мембран - регуляция переноса веществ. Существуют два способа переноса веществ через мембрану: пассивный и активный транспорт:

Транспорт веществ через мембраны

Пассивный транспорт . Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией . Различают два типа диффузии: простую и облегченную .

Простая диффузия характерна для небольших нейтральных молекул (H 2 O, CO 2 , O 2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия . Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа ) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТР. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na + и K + через клеточную мембрану. Эта система называется Na + - K + - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К + выше, чем Na + :

Механизм действия Na + , K + -АТР-азы

Градиент концентрации калия и натрия поддерживается путем переноса К + внутрь клетки, а Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + ,K + -насос представляет собой белок - транспортную АТР-азу . Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится три иона Na + , а в обратном направлении - два иона К + . При этом используется энергия молекулы АТР. Существуют транспортные системы для переноса ионов кальция (Са 2+ - АТР-азы), протонные насосы (Н + - АТР-азы) и др. Симпорт это активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества. Транспортная АТР-аза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи. При этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТР-азой.