Распределение характеризуется следующими правилами:

    принципом Паули;

    правилом Гунда;

    принципом наименьшей энергии и правилом Клечковского.

По принципу Паули в атоме не может быть двух и более электронов с одинаковым значением всех четырех квантовых чисел. Основываясь на принципе Паули можно установить максимальную емкость каждого энергетического уровня и подуровня.

Подуровень, ℓ

Обозначение подуровня

Магнитное квантовое число, m

Спиновое квантовое число,s

3, -2, -1, 0, 1, 2, 3

Таким образом, максимальное количество электронов на:

s -подуровне – 2,

p - подуровне – 6,

d -подуровне ­­– 10,

f -подуровне – 14.

В пределах квантового уровня n электрон может принимать значения 2n 2 различных состояний, что было установлено опытным путем с помощью спектрального анализа.

Правило Гунда : в каждом подуровне электроны стремятся занять максимальное число свободных энергетических ячеек, чтобы суммарный спин имел наибольшее значение.

Например:

правильно неправильно неправильно

3р 3:

s = +1/2+1/2+1/2=1,5 s =-1/2+1/2+1/2=0,5 s = -1/2+1/2-1/2=-0,5

Принцип наименьшей энергии и правило Клечковского: электроны в первую очередь заселяют квантовые орбитали с минимальной энергией. Так как запас энергии в атоме определяется значением суммы главного и орбитального квантовых чисел (n + ℓ), то сначала электроны заселяют орбитали, для которых сумма (n + ℓ) наименьшая.

Например: сумма (n + ℓ) для 3d - подуровня равна n = 3, l = 2, следовательно, (n + ℓ) = 5;для 4s-подуровня: n = 4, ℓ = 0, следовательно, (n + ℓ) = 4. В этом случае в первую очередь заполняется 4s-подуровень и только потом 3d-подуровень.

Если суммарные значения энергии равны, то заселяется тот уровень, который находится ближе к ядру.

Например: для 3d: n = 3, ℓ = 2, (n + ℓ) = 5;

для 4p: n = 4, ℓ = 1, (n + ℓ) = 5.

Так как n = 3 < n = 4, 3d заселится электронами раньше, чем 4 p.

Таким образом, последовательность заполнения уровней и подуровней электронами в атомах:

1 s 2 <2 s 2 <2 p 6 <3 s 2 <3 p 6 <4 s 2 <3 d 10 <4 p 6 <5 s 2 <4 d 10 <5 p 6 <6 s 2 <5 d 10 4 f 14 <6 p 6 <7s 2 …..

Электронные формулы

Электронная формула - это графическое изображение распределения электронов по уровням и подуровням в атоме. Существует два вида формул:

    при написании используются только два квантовых числа: n и ℓ. Главное квантовое число указывается цифрой перед буквенным обозначением подуровня. Орбитальное квантовое число указывается буквой s, p, d или f. Количество электронов указывается цифрой как показатель степени.

Например: +1 H: 1s 1 ; +4 Be: 1s 2 2s 2 ;

2 He: 1s 2 ; +10 Ne: 1s 2 2s 2 2p 6 ;

3 Li: 1s 2 2s 1 ; +14 Si: 1s 2 2s 2 2p 6 3s 2 3p 6 .

То есть соблюдается последовательность

1 s 2 <2 s 2 <2 p 6 <3 s 2 <3 p 6 <4 s 2 <3 d 10 <4 p 6 <5 s 2 <4 d 10 <5 p 6 <6 s 2 <5 d 10 4 f 14 <6 p 6 <7s 2 …..

    графическая электронная формула - используются все 4 квантовых числа - это распределение электронов по квантовым ячейкам. Главное квантовое число изображается слева, орбитальное – внизу буквой, магнитное – количество клеток, спиновое – направление стрелок.

Например:

8 O:…2s 2 2p 4

Графическая формула используется для записи только валентных электронов.

Рассмотрим составление электронных формул элементов по периодам.

I период содержит 2 элемента, у которых полностью заселен электронами I квантовый уровень и s-подуровень (максимальное количество электронов на подуровне - 2):

2 He: n=1 1s 2

Элементы, у которых последним заполняется s-подуровень, относят к s -семейству и называют s -элементами .

У элементов II периода идет заполнение II квантового уровня, s- и p-подуровня (максимальное количество электронов на р-подуровне - 8).

3 Li: 1s 2 2s 1 ; 4 Be: 1s 2 2s 2 ;

5 B: 1s 2 2s 2 2p 1 ; 10 Ne: 1s 2 2s 2 2p 6

Элементы, у которых последним заполняется р-подуровень, относят к р-семейству и называют р-элементами .

У элементов III периода начинается формирование III квантового уровня. У Na и Mg идет заселение электронами 3s-подуровня. У элементов от 13 Al до 18 Ar заселяется 3p-подуровень; 3d-подуровень остается незаполненным, так как обладает более высоким уровнем энергии, чем 4s-подуровень и не заполняется у элементов III периода.

3d-подуровень начинает заполняться у элементов IV периода, а 4d - у элементов V периода (в соответствии с последовательностью):

19 K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 ; 20 Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

21 Sс: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ; 25 Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 ;

33 As: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3 ; 43 Tc: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 5

Элементы, у которых последним заполняется d-подуровень, относят к d -семейству и называют d -элементами .

4f заполняется только после 57 элемента VI периода:

57 La: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 ;

58 Сe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 5s 2 4d 10 5p 6 6s 2 5d 1 4f 1 ;

Заселение электронами V квантового уровня идет аналогично IV периоду. Таким образом, соблюдается показанная ранее последовательность заселения электронами уровней и подуровней:

6s 2 5d 10 4f 14 6p 6

    заселение электронами нового квантового уровня всегда начинается с s-подуровня. У элементов данного периода заселяются электронами только s и p подуровни внешнего квантового уровня;

    заселение d-подуровня запаздывает на I период; 3d-подуровень заполняется у элементов IV периода, 4d – подуровень у элементов V периода и т.д.;

    заселение электронами f подуровня запаздывает на 2 периода; 4f-подуровень заселяется у элементов VI периода, 5f – подуровень у элементов VII периода и т.д.

Тема урока: «Распределение электронов по атомным орбиталям»

Цель: изучить распределение электронов по орбиталям

Развивающая: развитие логического мышления по средствам установления причинно-следственных связей.

Образовательная: изучить такие понятия как: электронное облако, орбиталь, атомная орбиталь, формы существования орбиталей, правила заполнения орбиталей.

Положение элемента в периодической таблице обуславливает его свойства, порядковый номер- показывает заряд ядра атома, номер периода-количества энергетических уровней, номер группы-число электронов на последнем энергетическом уровне.

Электроны распределяются вокруг ядра по энергетическим уровням и движутся по определенным атомным орбиталям.

Атомная орбиталь – это область наиболее вероятного пребывания электрона в электрическом поле ядра атома

Положение элемента в пс определяет тип его орбиталей, различающихся формой, размерами

s-орбиталь

p- орбиталь

d- орбиталь

для элементов первого периода характерна одна эс орбиталь, у элементов 2 периода к эс орбитали добавляется п орбиталь, у элементов 3 периода появляется d

Порядок заполнения уровней и подуровней электронами .

I. Электронные формулы атомов химических элементов составляют в следующем порядке:

· Определяем по номеру элемента в таблице Д. И. Менделеева общее число электронов в атоме;

· По номеру периода необходимо определить число энергетических уровней;

· Уровни разбиваются на подуровни и орбитали, и заполняются электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N=2n2 и с учётом того, что:

1. у элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu, Ag, Au, Cr, Nb, Mo, Ru, Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II. Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

III. Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s-подуровня внешнего s-элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.

Элементы, в атомах которых электронами заполняется p-подуровень внешнего энергетического уровня, называются p-элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III-VIII групп.

Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами . Это элементы вставных декад IV, V, VI периодов.

Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами . К f-элементам относятся лантаноиды и актиноиды.

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
    • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
    • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
    • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
    • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
    • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
    • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
    • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
    • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
    • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Энергетическое состояние и расположение электронов в оболочках или слоях атомов определяют четырьмя числами, которые называются квантовыми и обычно обозначаются символами n, l, s и j; квантовые числа имеют, прерывный, или дискретный, характер, т. е. могут получать только отдельные, дискретные, значения, целые или полуцелые.

По отношению к квантовым числам п, l, s и j необходимо еще иметь в виду следующее:

1. Квантовое число n называется главным; оно общее для всех электронов, входящих в состав одной и той же электронной оболочки; иначе говоря, каждой из электронных оболочек атома отвечает определенное значение главного квантового числа, а именно: для электронных оболочек К, L, М, N, О, Р и Q главные квантовые числа равны соответственно 1, 2, 3, 4, 5, 6 и 7. В случае одноэлектроиного атома (атом водорода) главное квантовое число служит для определения орбиты электрона и одновременно энергии атома при стационарном состоянии.

2. Квантовое число I называется побочным, или орбитальным, и определяет момент количества движения электрона, вызванного его вращением вокруг атомного ядра. Побочное квантовое число может иметь значения 0, 1, 2, 3, . . . , а в общем виде обозначается символами s, р, d, f, . . . Электроны, имеющие одно и то же побочное квантовое число, образуют подгруппу, или, как часто говорят, находятся на одном и том же энергетическом подуровне.

3. Квантовое число s часто называют спиновым, так как оно определяет момент количества движения электрона, вызванного его собственным вращением (момент спина).

4. Квантовое число j называется внутренним и определяется суммой векторов l и s.

Распределение электронов в атомах (атомных оболочках) следует также некоторым общим положениям, из них необходимо указать:

1. Принцип Паули, согласно которому в атоме не может быть больше одного электрона с одинаковыми значениями всех четырех квантовых чисел, т. е. два электрона в одном и том же атоме должны различаться между собой значением хотя бы одного квантового числа.

2. Принцип энергетический, согласно которому в основном состоянии атома все его электроны должны находиться на наиболее низких энергетических уровнях.

3. Принцип количества (числа) электронов в оболочках, согласно которому предельное число электронов в оболочках не может превышать 2n 2 , где n - главное квантовое число данной оболочки. Если число электронов в некоторой оболочке достигает предельного значения, то оболочка оказывается заполненной и в следующих элементах начинает формироваться новая электронная оболочка.

В соответствии с тем, что было сказано, в таблице ниже даны: 1) буквенные обозначения электронных оболочек; 2) соответствующие значения главных и побочных квантовых чисел; 3) символы подгрупп; 4) теоретически рассчитанное наибольшее число электронов как в отдельных подгруппах, так и в оболочках в целом. Необходимо указать, что в оболочках К, L и М число электронов и их распределение по подгруппам, определенные из опыта, вполне отвечают теоретическим вычислениям, но в следующих оболочках наблюдаются значительные расхождения: число электронов в подгруппе f достигает предельного значения только в оболочке N, в следующей оболочке оно уменьшается, а затем исчезает и вся подгруппа f.

Оболочка

Подгруппа

Число электронов в подгруппе

Число электронов в оболочке (2n 2)

В таблице даны число электронов в оболочках и их распределение по подгруппам для всех химических элементов, в том числе и трансурановых. Числовые данные этой таблицы были установлены в результате очень тщательных спектроскопических исследований.

1-й период

2-й период

3-й период

4-й период

5-й период

6-й период

7-й период

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

Распределение электронов по энергетическим уровням объясняет металлические, а также неметаллические свойства любых элементов.

Электронная формула

Существует определенное правило, согласно которому и размещаются свободные и спаренные отрицательные частицы на уровнях и подуровнях. Рассмотрим подробнее распределение электронов по энергетическим уровням.
На первом энергетическом уровне располагается всего два электрона. Заполнение ими орбитали осуществляется по мере увеличения запаса энергии. Распределению электронов в атоме химического элемента соответствует порядковый номер. У энергетических уровней с минимальным номером максимально выражена сила притяжения валентных электронов к ядру.

Пример составления электронной формулы

Рассмотрим распределение электронов по энергетическим уровням на примере атома углерода. Его порядковый номер 6, следовательно, внутри ядра располагается шесть протонов, имеющих положительный заряд. Учитывая, что углерод является представителем второго периода, для него характерно наличие двух энергетических уровней. На первом располагается два электрона, на втором – четыре.
Правило Хунда объясняет расположение в одной ячейке только двух электронов, которые имеют разные спины. На втором энергетическом уровне находится четыре электрона. В итоге распределение электронов в атоме химического элемента имеет следующий вид: 1s22s22p2.
Существуют определенные правила, согласно которым происходит распределение электронов по подуровням и уровням.

Принцип Паули

Этот принцип был сформулирован Паули в 1925 году. Ученый оговорил возможность размещения в атоме только двух электронов, которые имеют одинаковые квантовые числа: n, l, m, s. Отметим, что распределение электронов по энергетическим уровням происходит по мере увеличения запаса свободной энергии.

Правило Клечковского

Заполнение энергетических орбиталей осуществляется согласно возрастанию квантовых чисел n + l и характеризуется увеличением энергетического запаса.
Рассмотрим распределение электронов в атоме кальция.
В нормальном состоянии его электронная формула имеет следующий вид:
Са 1s2 2s2 2p6 3s2 3p6 3d0 4s2.
У элементов подобных подгрупп, относящихся к d- и f-элементам, наблюдается «провал» электрона с внешнего подуровня, имеющего меньший запас энергии, на предыдущий d- или f-подуровень. Подобное явление характерно для меди, серебра, платины, золота.
Распределение электронов в атоме предполагает заполнение подуровней неспаренными электронами, которые обладают одинаковыми спинами.
Только после полного заполнения всех свободных орбиталей одиночными электронами, происходит дополнение квантовых ячеек вторыми отрицательными частицами, наделенными противоположными спинами.
Например, в невозбужденном состоянии у азота:
1s2 2s2 2p3.
На свойства веществ оказывает влияние электронная конфигурация валентных электронов. По их количеству можно определить высшую и низшую валентность, химическую активность. Если элемент находится в главной подгруппе таблицы Менделеева, можно по номеру группы составить внешний энергетический уровень, определить его степени окисления. К примеру, у фосфора, который находится в пятой группе (главной подгруппе), содержится пять валентных электронов, следовательно, он способен принимать три электрона либо отдавать пять частиц другому атому.
В качестве исключений из этого правила выступают все представители побочных подгрупп таблицы Менделеева.

Особенности семейств

В зависимости от того, какое строение имеет внешний энергетический уровень, существует подразделение всех нейтральных атомов, входящих в таблицу Менделеева, на четыре семейства:
    s-элементы находятся в первой и второй группах (главных подгруппах);p-семейство располагается в III-VIII группах (А подгруппах);d-элементы можно найти в подобных подгруппах с I-VIII группы;f-семейство составляют актиноиды и лантаноиды.
У всех s-элементов в нормальном состоянии есть валентные электроны на s-подуровне. Для p-элементов характерно наличие свободных электронов на s- и p-подуровнях.
У d-элементов в невозбужденном состоянии есть валентные электроны и на последнем s-, и на предпоследнем d- подуровне.

Заключение

Состояние любого электрона в атоме можно описать с помощью набора основных чисел. В зависимости от особенностей его строения, можно вести речь об определенном запасе энергии. Пользуясь правилом Хунда, Клечковского, Паули для любого элемента, входящего в таблицу Менделеева, можно составить конфигурацию нейтрального атома.
Самым небольшим запасом энергии в невозбужденном состоянии обладают электроны, расположенные на первых уровнях. При нагревании нейтрального атома наблюдается переход электронов, что всегда сопровождается изменением количества свободных электронов, приводит к существенному изменению показателя степени окисления элемента, изменению его химической активности.