Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Рис. 36


Рис. 37

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и нумеруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.


Рис. 38

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое квадратичная функция, и с чем ее едят. Если ты считаешь себя профи по части квадратичных функций, добро пожаловать. Но если нет, тебе стоит прочитать тему .

Начнем с небольшой проверки :

  1. Как выглядит квадратичная функция в общем виде (формула)?
  2. Как называется график квадратичной функции?
  3. Как влияет старший коэффициент на график квадратичной функции?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по .

Итак, ты уже умеешь обращаться с квадратичной функцией, анализировать ее график и строить график по точкам.

Ну что же, вот она: .

Давай вкратце вспомним, что делают коэффициенты .

  1. Старший коэффициент отвечает за «крутизну» параболы, или, по-другому, за ее ширину: чем больше, тем парабола у́же (круче), а чем меньше, тем парабола шире (более пологая).
  2. Свободный член - это координата пересечения параболы с осью ординат.
  3. А коэффициент каким-то образом отвечает за смещение параболы от центра координат. Вот об этом сейчас подробнее.

С чего мы всегда начинаем строить параболу? Какая у нее есть отличительная точка?

Это вершина . А как найти координаты вершины, помнишь?

Абсцисса ищется по такой формуле:

Вот так: чем больше , тем левее смещается вершина параболы.

Ординату вершины можно найти, подставив в функцию:

Подставь сам и посчитай. Что получилось?

Если сделать все правильно и максимально упростить полученное выражение, получится:

Получается, что чем больше по модулю , тем выше будет вершина параболы.

Перейдем, наконец, к построению графика.
Самый простой способ - строить параболу, начиная с вершины.

Пример:

Построить график функции.

Решение:

Для начала определим коэффициенты: .

Теперь вычислим координаты вершины:

А теперь вспоминаем: все параболы с одинаковым старшим коэффициентом выглядят одинаково. Значит, если мы построим параболу и переместим ее вершиной в точку, получится нужный нам график:

Просто, правда?

Остается только один вопрос: как быстро рисовать параболу? Даже если мы рисуем параболу с вершиной в начале координат, все равно приходится строить ее по точкам, а это долго и неудобно. А ведь все параболы выглядят одинаково, может, есть способ ускорить их рисование?

Когда я учился в школе, учительница математики сказала всем вырезать из картона трафарет в форме параболы, чтобы быстро ее чертить. Но с трафаретом везде ходить не получится, да и на экзамен его взять не разрешат. Значит, не будем пользоваться посторонними предметами, а будем искать закономерность.

Рассмотрим простейшую параболу. Построим ее по точкам:

Закономерность здесь такая. Если из вершины сместиться вправо (вдоль оси) на, и вверх (вдоль оси) на, то попадем в точку параболы. Дальше: если из этой точки сместиться вправо на и вверх на, снова попадем в точку параболы. Дальше: вправо на и вверх на. Дальше что? Вправо на и вверх на. И так далее: смещаемся на вправо, и на следующее нечетное число вверх. То же самое потом проделываем с левой веткой (ведь парабола симметрична, то есть ее ветви выглядят одинаково):

Отлично, это поможет построить из вершины любую параболу со старшим коэффициентом, равным. Например, нам стало известно, что вершина параболы находится в точке. Построй (самостоятельно, на бумаге) эту параболу.

Построил?

Должно получиться так:

Теперь соединяем полученные точки:

Вот и все.

ОК, ну что же, теперь строить только параболы с?

Конечно, нет. Сейчас разберемся, что с ними делать, если.

Рассмотрим несколько типичных случаев.

Отлично, параболу рисовать научились, давай теперь потренируемся на настоящих функциях.

Итак, нарисуй графики таких функций:

Ответы:

3. Вершина: .

Помнишь, что делать, если старший коэффициент меньше?

Смотрим на знаменатель дроби: он равен. Значит, будем двигаться так:

  • вправо - вверх
  • вправо - вверх
  • вправо - вверх

и так же влево:

4. Вершина: .

Ой, а что с этим делать? Как отмерять клетки, если вершина где-то между линиями?..

А мы схитрим. Нарисуем сперва параболу, а уже потом переместим ее вершиной в точку. Даже нет, поступим еще хитрее: Нарисуем параболу, а потом переместим оси: - на вниз , а - на вправо :

Этот прием очень удобен в случае любой параболы, запомни его.

Напомню, что мы можем представить функцию в таком виде:

Например: .

Что это нам дает?

Дело в том, что число, которое вычитается из в скобках () - это абсцисса вершины параболы, а слагаемое за скобками () - ордината вершины.

Это значит, что, построив параболу, нужно будет просто сместить ось на влево и ось на вниз.

Пример: построим график функции.

Выделим полный квадрат:

Какое число вычитается из в скобках? Это (а не, как можно решить не подумав).

Итак, строим параболу:

Теперь смещаем ось на вниз, то есть на вверх:

А теперь - на влево, то есть на вправо:

Вот и все. Это то же самое, как переместить параболу вершиной из начала координат в точку, только прямые ось двигать намного легче, чем кривую параболу.

Теперь, как обычно, сам:

И не забывай стирать ластиком старые оси!

Я в качестве ответов для проверки напишу тебе ординаты вершин этих парабол:

Все сошлось?

Если да, то ты молодец! Уметь обращаться с параболой - очень важно и полезно, и здесь мы выяснили, что это совсем не трудно.

ПОСТРОЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ. КОРОТКО О ГЛАВНОМ

Квадратичная функция - функция вида, где, и -- любые числа (коэффициенты), - свободный член.

График квадратичной функции - парабола .

Вершина параболы:
, т.е. чем больше \displaystyle b , тем левее смещается вершина параболы.
Подставляем в функцию, и получаем:
, т.е. чем \displaystyle b больше по модулю , тем выше будет вершина параболы

Свободный член - это координата пересечения параболы с осью ординат.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Построение эллипса

Эллипс - замкнутая плоская выпуклая кривая, сумма расстояний каждой точки которой до двух данных точек, называемых фокусами, лежащих на большой оси постоянная, и равна длине большой оси. Построение овала по двум осям (рисунок 23) выполняется следующим образом:

  • - проводят осевые линии, на которых симметрично от точки пересечения O откладывают отрезки AB и CD, равные большой и малой осям эллипса;
  • - строят две окружности радиусами равными половине осей эллипса с центром в точке пересечения осей;
  • - делят окружность на двенадцать равных частей. Деление окружности выполняют как показано в п.2.3;
  • -.через полученные точки проводят лучи-диаметры;
  • - из точек пересечения лучей с соответствующими окружностями проводят прямые линии параллельно осям эллипса до их взаимного пересечения в точках лежащих на эллипсе;
  • - полученные точки соединяют плавной кривой линией при помощи лекал. При построении лекальной кривой линии необходимо выбирать и располагать лекало так, чтобы соединялось как минимум четыре-пять точек.

Существуют и другие способы построения эллипса.

Построение параболы

Парабола - плоская кривая линия, каждая точка которой равноудалена от директрисы DD 1 - прямой, перпендикулярной к оси симметрии параболы, и от фокуса F, точки расположенной на оси симметрии. Расстояние KF между директрисой и фокусом называется параметром параболы p .

На рисунке 24 показан пример вычерчивания параболы по вершине O, оси OK и хорде CD. Построение выполняют следующим образом:

  • - проводят горизонтальную прямую линию на которой отмечают вершину O и откладывают ось OK.;
  • - через точку K проводят перпендикуляр на котором симметрично вверх и вниз откладывают длину хорды параболы;
  • - строят прямоугольник ABCD, в котором одна сторона равна оси, а другая - хорде параболы;
  • - сторону BC делят на несколько равных частей, а отрезок KC на столько же равных частей;
  • - из вершины параболы О проводят лучи через точки 1, 2, и т.д., а через точки 1 1 , 2 1 , и т. д.;
  • - проводят прямые параллельные оси и определяют точки пересечения лучей с соответствующими параллельными прямыми, например, точку пересечения луча О1 с прямой О1 1 , которая принадлежит параболе;
  • - полученные точки соединяют плавной кривой линией под лекало. Вторая ветвь параболы строится аналогично.

Существуют и другие способы построения параболы.

Геометрические кривые имеют большое практическое применение в машиностроительной и строительной технике при конструировании деталей машин, исследовании процессов в машинах и т. п.

Они разделяются на циркульные и лекальные. К первым относятся завитки, овалы и т. п.; ко вторым -эллипсы, гиперболы, спирали, рулеты, синусоидальные кривые и т. п.

Рассмотрим построение этих кривых.

А. Циркульные кривые

Завитки. Завиток представляет собой кривую, приближающуюся по форме к спирали, вычерченной дугами окружностей. Завитки бывают двух-, трёх-, четырёх- и многоцентровые.

Построение двухцентрового завитка. Для построения двухцентрового завитка (фиг. 78) задаёмся расстоянием с между центрами 1-2.

Через центры 1 и 2 проводим прямую, и из точки 1 описываем полуокружность радиуса с до пересечения с продолжением той же пря­мой в точке p. Затем из центра 2, описываем полуокружность радиуса 2c до пересечения с прямой qs в точке t. Далее снова переходим в центр 7, откуда строим полуокружность радиуса Зс до пересечения с прямой в точке q и т. д.

Построение трёхцентрового завитка. Для построения завитка, имею­щего три центра 1> 2 и 3 (фиг. 79), находящихся на равных расстоя­ниях с один от другого, необходимо предварительно построить равно­сторонний треугольник 7, 2, 3 и продолжить его стороны так, как это показано на фигуре.

Из центра 7 проводим дугу З-к радиусом 1-3, равным с, до пере­сечения с продолжением стороны 2-1. Затем из центра 2 описываем дугу кр радиусом, равным 2c, до пересечения с продолжением стороны 3-2 в точке p, после чего из центра 3 проводим дугу pq радиусом, равным Зс, до пересечения с продолжением стороны 1-3 в точке q. После этого возвращаемся в центр 1 и продолжаем построение в такой же последовательности, каждый раз увеличивая радиус дуги на величину с.

Построение многоцентровых завитков выполняется аналогично по­строению, приведённому на фиг. 80 и 81.

Овалы (коробовые кривые) . Овалом называется замкнутая кривая, состоящая из сопряжённых дуг окружностей разных радиусов. Овалы по форме напоминают эллипсы. Поэтому в практике в тех случаях, когда требуется построить эллипс, нередко вычерчивают овал, так как построение его значительно проще. Приводим несколько способов по­строения овалов.

Построение овала по заданной большой оси AB делением её на три равные части (фиг. 82). Делим заданную ось AB на три равные части и описываем из точек деления 7 и 2, как из центров, окружности радиусом А-1, получим точки 3 и 4.

Центрами сопряжения дуг овала будут точки 7, 2, 3 и 4. Для нахождения точек сопряжения проводим из центра 3 прямые через точки 7 и 2, а из центра 4-прямые 4-1 и 4-2. Найденные точки а, b, с и e будут точками сопряжения дуг овала.

Из центров 7 и 2 проводим дуги радиусом 1-а, а из центров З-4-радиусом З-а.

Построение овала по заданной большой оси AB при условии, что расстояние между центрами O-1 и 0-2=1/4 AB (фиг. 83). Через центр овала О проводим малую ось перпендикулярно AB и из того же центра радиусом 0-1=1/20A описываем окружность. Пересечение последней с малой осью определит центры 3 и 4. Дальнейшее построение анало­гично предыдущему.

Построение овала по заданной малой оси СЕ (фиг. 84). Через середину О заданной малой оси СЕ проводим перпендикулярно к ней большую ось овала. Из центра О описываем окружность радиусом ОС. Пересечение её с большой осью определит центры 7 и 2 дуг сопряже­ния аb и се. Центрами дуг aCc и bЕе соответственно будут точки E и C.

Построение овала по двум заданным осям AB и CD (фиг. 85). Соединяем концы осей прямой CB и из центра О описываем дугу радиуса OB до пересечения с малой осью в точке B". Затем из точки С,

как из центра, проводим дугу радиуса CB" (разность полуосей) до пере­сечения с прямой CB в точке В".

Через середину отрезка B"B проводим перпендикуляр и продолжаем его до пересечения с полуосями OB и OD в точках 7 и 2, которые будут центрами сопряжения дуг аb и ас. Центры 3 и 4 определяются как точки, симметричные центрам 7 и 2.

Б. Лекальные кривые

Архимедова спираль (фиг. 86). Архимедова спираль представляет собою плоскую кривую, образованную точкой, равномерно движущейся по радиусу-вектору, который в то же время равномерно вращается вокруг неподвижной точки О.

Точки архимедовой спирали подчинены уравнению p=Rф, где p-pa- диус-вектор; ф-угол вращения; R-радиус окружности.

Пусть даны: центр О и радиус R окружности, ограничивающей кривую. Для построения по этим данным спирали разделим окружность и радиус на одно и то же число равных частей, например на 12.

Через точки деления радиуса проводим 12 концентрических окруж­ностей, а через точки деления окружности 12 радиусов. Затем нумеруем окружности и радиусы, как показано на фиг. 86. Точки пересечения одноимённых концентрических окружностей и радиусов принадлежат кривой архимедовой спирали. Соединение точек О; 1", 2", 3" и т. д. производится при помощи лекала. По архимедовой спирали строится профиль фасонной фрезы.

Логарифмическая спираль (фиг. 87). Логарифмическую спираль можно построить подобно спирали Архимеда как траекторию точки, перемещающейся по радиусу-вектору, в то время как сам радиус-вектор вращается вокруг неподвижной точки.

При этом, если угол поворота радиуса-вектора изменяется в ариф­метической прогрессии, то радиус-вектор изменяется в геометрической прогрессии.

Особенностью логарифмической спирали является то, что угол, образованный касательной k любой точке кривой с радиусом-вектором, есть величина постоянная. Этим свойством обладает также окружность, у которой этот угол составляет 45°. Следовательно, при одинаковых углах между радиус-векторами хорды, соединяющие концы их, обра­зуют с соответственными радиусами равные углы.

Рассмотрим построение логарифмической спирали на примере. Пусть дан полюс О и отрезок прямой, равный OA, причём точка А принадлежит спирали. Требуется построить логарифмическую спираль (фиг. 87). Через полюс О проводим под равными углами друг к другу радиусы-векторы. В нашем примере они проведены под углом 45°. Из точки А под углом к радиусу-вектору OA строим хорду A1. Угол должен быть задан как параметр, характеризующий данную спираль; в этом примере а = 60°. Построенная хорда пересечёт смежный радиус-вектор в точке 1, также принадлежащей спирали. Проведя из точки 1 хорду под тем же углом, получим на радиусе-векторе 02 точку 2, принадлежащую этой спирали. Следующие точки находятся таким же образом. Получив точки первого оборота спирали, строим дальше в таком же порядке точки, принадле­жащие второму, третьему и т. д. оборотам. Число оборотов для этой спирали бесконечно. Полюс О в этом случае является асимптотической точкой.

Логарифмическая спираль применяется в технике для затылования зубцов фасонных фрез, в частности зуборезных фрез.

Эллипс. Если прямой круговой конус рассечь наклонной плоско­стью так, чтобы она пересекла все его образующие, то в плоскости сечения получится замкнутая кривая-эллипс; углы наклона секущей плоскости и образующей конуса к плоскости основания его будут иметь зависимость а < p (фиг. 88).

Эллипсом называется замкнутая плоская кривая, сумма расстояний каждой точки которой до двух точек (симметрично расположенных на большой оси относительно центра кривой), называемых фокусами, есть величина постоянная, равная большой оси эллипса (фиг. 89), т. е.

F 1 M + F 2 M = F 1 K+ F 2 K =AB.

Точки эллипса подчинены уравнению x 2 /a 2 +y 2 /b 2 =1, где а-малая по­луось, b-большая полуось.

Существует несколько способов построения эллипса. Укажем на основные.

Построим эллипс по его главным осям-большой KL и малой - СE (фиг. 90).

Проводим из центра О произвольно ряд лучей, которые пересекут большую окружность в точках 1,3 и т. д., а малую-в точках 2,4 и т.д. Через точки пересечения на большой окружности проводим прямые, па­раллельные малой оси эллипса, а через точки пересечения на малой окруж­ности-прямые, параллельные большой оси эллипса; полученные в пересе­чении точки а, b, С и т. д. принадлежат искомой кривой.

Рассмотрим эллипс как прямоугольную проекцию окружности. Два диаметра эллипса, являющиеся проекцией двух взаимно перпендикуляр­ных диаметров окружности, называются сопряжёнными диаметрами. Обратим внимание на одно свойство отрезков сторон параллелограмма, построенного на сопряжённых диаметрах эллипса. Рассмотрим окруж­ность с описанным вокруг

неё квадратом (фиг. 91). Проведём через произвольную точку E хорду BE и секущую AM.

Треугольники OKB и AHМ равны. У них OB =AH, а кут НАМ равен куту KBO.

Следовательно, OK=HM. Так как OC=GH, OK/OC=HM/CH,

отрезок HМ составляет такую же часть отрезка НС, как отрезок OK отрезка ОС.

Как известно, прямоугольное проектирование не нарушит этих отношений (фиг. 92): квадрат спроектируется в общем случае в парал­лелограмм, окружность-в эллипс, точка E на окружности-в точку e на эллипсе, причём

OK/OC=hm/hc=HM/HC

На основании этого имеем способ построения точек эллипса по данной паре сопряжённых диаметров.

Сначала рассмотрим частный случай, когда сопряжённые диаметры KL и ЕМ пересекаются под прямым углом (фиг. 93). Построим прямоуголь­ник по точкам К, Е, L и M и разделим большую сторону и малую ось на произвольное число равных частей, например на восемь. Через конеч­ные точки большой оси К и L проводим ряд лучей, соединяющих эти точки с точками 1", 2", 3" и т. д. (деления стороны прямоугольника), и через точки 1, 2, 3 (деления малой полуоси). Лучи проводим до их взаимного пересечения. Полученные при этом точки a, b, с и т. д. при­надлежат искомой кривой.

Рассмотрим теперь общий случай, когда угол между сопряжёнными диаметрами не прямой и эллипс надо вписать в параллелограмм. Задачу эту решим для случая построения диметрической проекции окружности (фиг. 94).

Проводим горизонтальную прямую. Берём на ней точку О. Строим в точке О сопряжённые диаметры эллипса KL и ЕМ: больший-под углом 7° к горизонтальной прямой, малый-под углом 41°. По большой оси откладываем LK = d, а по малой EM = 0,5LK = 0,5 d. Проведя через концевые точки К и L, E и M прямые, параллельные осям, полу­чим параллелограмм.

Делим большую сторону параллелограмма и малую ось на равное число частей, например на восемь. Из точек К и L через точки деле­ния проводим лучи; пересечение лучей К-1" и L- 1 дадут точку пере­сечения а; пересечение лучей K-2" и L-2-точку b и т. д.

Парабола. Если прямой круговой конус рассечь плоскостью, параллельной какой-нибудь образующей (a = ?), то в сечении будет кривая- парабола (фиг. 95).

Парабола находит применение в машиностроении (очертаниях крон­штейнов, фермах, зубчатых колёсах, коренных подшипниках, сопряже­ниях рёбер стоек и подвесках подшипников), в оптике (линзы, прожек­торные зеркала и т. п.).

На фиг. 97 приведён способ построения параболы, основанный на определённых свойствах кривой.

Проводим взаимно перпендикулярные прямые TT и AM и принимаем одну из них-ТТ за директрису, а другую AМ-за ось параболы.На прямой AM откладываем отрезок AF равный P-выбранному нами расстоянию от фокуса до директрисы. Делим отрезок AF пополам. Середина его- точка О будет вершиной параболы, а точка,F-фокусом.

Затем проводим через фокус F прямую, параллельную TT, и опи­сываем из точки F дугу радиусом AF до пересечения с проведённой прямой; полученные точки С и E принадлежат параболе; AF=p; CE = CF + FE, но CF = EF=p, следовательно, CE = 2p.

Так же могут быть получены и другие точки параболы.

Возьмём, например, на оси произвольную точку 1 и проведём через неё вертикальную прямую. Сделав затем засечки на этой прямой дугой радиуса Л / из F, получим точки И и К, которые также принадлежат параболе.

Решим другую задачу. Пусть требуется через точку e провести ка­сательную к параболе (фиг. 97). Для этого опускаем из точки e на ось параболы перпендикуляр ea. Откладываем On = Oa и соединяем точки n и e прямой, которая и будет искомой касательной.

В тех случаях, когда точка n выходит за пределы чертежа и про­вести прямую не представляется возможным, можно провести через вер­шину О касательную и на ней отложить отрезок OB, равный половине ae, и точку В соединить с точкой e. В этом случае прямая Be будет искомой касательной в точке e. Касательная к вершине параболы делит пополам любую касательную от точки её касания до точки пересечения с осью параболы.

Построим параболу по данным: вершине Л и одной из точек кри­вой-K (фиг. 98), Для построения промежуточных точек проводим из точек Л и К две взаимно перпендикулярные прямые до встречи в точке С и делим КС и АС на одинаковое число равных частей. Через точки деления на АС проводим прямые, параллельные CK, а из точки A-лучи к точкам деления на CK. Пересечение параллельных прямых с одноимён­ными лучами определит точки, принадлежащие параболе.

На фиг. 99 приведено построение параболы по двум симметричным точкам А и В и точке К, заданной на оси параболы.

Строим по заданным точкам А, К и В треугольник AKB. Стороны AK и KB делим на одинаковое число равных частей, и точки деления сое­диняем следующим образом: нижнюю точку 1 прямой AK соединяем с верхней точкой 1 прямой KB, точку 2 прямой АК - с точкой 2 прямой KB и т. д. Проведённая таким образом сеть прямых образует систему каса­тельных, определяющих форму кри­вой; огибающая этих касательных яв­ляется параболой.

Пользуясь этим важным свойством касательной, в баллистике определяют наивысшую точку полёга пули или снаряда, теоретически принимая траек­торию их полёта за параболу (фиг. 99).

Дальность полёта определяется хордой AB параболы, а угол вылета- углом наклона касательной AK к хорде AB.

Кубическая парабола (фиг. 100). Чтобы построить кубическую пара­болу, проходящую через точку Л, проводим прямую AB параллельно заданной оси ОХ, затем строим на ней, как на диаметре, полуокруж­ность. Разделив прямые OB и AB на одинаковое число равных частей, в нашем примере на пять, получим на прямой OB точки 1, 2, 3 и 4, а на прямой AB-точки а, b, с, d, которые переносим на полуокружность

(точки а 1 , b 1 , с 1 , d 1). Опускаем на прямую AB перпендикуляры a 1 I, b 1 II, c 1 III и т. д., а из точек 1, 2, 3, 4 проводим прямые, параллельные ОХ. Точки I, II, III и т. д. соединяем с точкой О лучами. Пересечения лучей с прямыми дадут соответственно точки / 0 , 2 0 , 3 0 , 4 0 , принадлежащие кубической параболе. Найденные точки соединяем плавной кривой.

Гипербола. Если прямой круговой конус рассечь плоскостью, про­ходящей параллельно двум его образующим так, чтобы угол? стал больше угла?, то фигурой сечения будет плоская кривая-гипербола (фиг. 101). Гиперболой называется кривая, все точки которой обладают таким свойством: разность расстояний от каждой точки гиперболы до двух заданных точек, называемых фокусами, есть величина постоянная, равная расстоянию между вершинами гиперболы FK - F 1 K = AB=2a (фиг. 102).

Точки гиперболы подчинены урав­нению

x 2 /a 2 - y 2 /h 2 =1

где а - половина расстояния между вершинами гиперболы;

с - половина расстояния между её фокусами.

Гипербола имеет две оси: дей­ствительную ось x и мнимую-y. При построении гиперболы пользу­ются асимптотами, внутри которых размещаются ветви гиперболы.

Асимптотами называются две прямые, проходящие через центр и касающиеся к гиперболе в бесконечности.

Если асимптоты образуют между собою угол 90°, то гиперболу называют равнобокой. Равнобокая гипербола имеет практическое примене­ние при различных расчётах.

Построение равнобокой гиперболы (фиг. 103). Пусть даны асимп­тоты ОХ и ОУ и точка Я, принадлежащая ветви гиперболы. Проведём через точку P перпендикуляры MP и PC. На PC возьмём несколько произвольных точек 1, 2, 3 и 4 У проведём через них прямые, параллель­ные OX; затем через эти же точки проведём лучи, выходящие из точки О, до пересечения с прямой МК, проведённой через точку P- параллельно асимптоте ОХ. Из полученных точек пересечения опускаем перпендикуляры на соответ­ствующие прямые, прове­дённые параллельно асимп­тоте OX, через точки 1, 2, 3 и 4. Точки пересечения а, b и e будут принадле­жать искомой кривой.

Построение гиперболы по вершинам А и В и фо­кусам F" и F" (фиг. 104). Для построения асимптот гиперболы описываем из О радиусом, равным OF", ок­ружность, а через вершины А и В проводим прямые, па­раллельные мнимой оси ОУ. Точки пересечения прове­дённых прямых с окруж­ностью определят направле­ние асимптот. Для получения отдельных точек, через которые пройдёт кривая, возьмём несколько произвольных точек, расположенных на дей­ствительной оси гиперболы справа от фокуса F", и обозначим их циф­рами 1, 2, 3 и 4. Расстояние между ними увеличиваем (произвольно) по мере их удаления от F". Принимая расстояния 1 - A и 1-В за радиусы- векторы, описываем из F" и F"" взаимно пересекающиеся дуги, точки пересечения которых принадлежат кривой. Действительно, разнoсть ра­диусов-векторов является для всех рассматриваемых точек (1, 2, 3 и 4) величиной постоянной, равной расстоянию между вершинами гиперболы. Таким образом, радиусами-векторами для точки 4 будут отрезки А-4 и В-4, разность которых равна AB, что и соответствует основному свойству кривой. Построение точек для левой ветви гиперболы выпол­няется так же, как и для правой.

Если прямые, проведён­ные через вершины А и В параллельно мнимой оси, пе­ресекут окружность в рав­ноудалённых от осей точ­ках, то асимптоты будут взаимно перпендикулярны, а гипербола - равнобокой.

Циклоидальные кривые (рулеты) . Циклоидальными кривыми называют траекто­рию точки круга, перекаты­вающегося без скольжения по прямой или неподвиж­ному кругу. К этим кривым относят циклоиду, гипоци­клоиду и эпициклоиду. Все они имеют практическое применение в ма­шиностроении. Так, они используются при построении профилей зубцов цилиндрических, конических и винтовых зубчатых колёс.

Точка, описывающая при своём движении циклоидальную кривую, называется производящей. Окружность или прямая, по которым проис­ходит перекатывание, называется направляющей.

Циклоида. Циклоидой называется кривая, которую описывает точка круга, катящегося без скольжения по прямой линии.

Пусть образующий круг диаметра d с взятой на нём производящей точкой К перекатывается по направляющей TT (фйг. 105). Точка К, перекатываясь вместе с кругом, опишет полный цикл кривой и снова придёт в соприкосновение с прямой ТТ. Расстояние между двумя по­следовательными положениями К на прямой TT соответствует полному

обороту кpyra и равно?d. Чтобы определить промежуточные положе­ния производящей точки в каждый момент, разделим прямую О 0 -0 12 на 12 равных частей. Точки O l ,0 2 , 0 3 и т. д. представляют последова­тельные положения центра образующего круга. Разделим и окружность на такое же число равных частей. Через точки деления проведём, па­раллельно направляющей, линии возвышения производящей точки.

Нетрудно представить, что при качении круга по направляющей расстоя­ние между любой из этих точек и соответственным положением точки К остаётся неизменным.

Пусть центр окружности О переместится в О 1 . Образующий круг

пройдёт путь, равный длине дуги К-1= ?d/12. Точка К перейдёт в поло­жение 1" на пересечении окружности, проведённой из О 1 с первой ли­нией возвышения производящей точки 1-11".

Если центр окружности переместится в точку 0 2 , то производящая точка займёт положение точки 2" на пересечении окружности, прове­дённой из 0 2} со второй линией возвышения 2-10" и т. д.

Плавная кривая, соединяющая полученные точки, носит название нормальной циклоиды. Кроме нормальной, существуют циклоиды растя­нутые и сжатые.

Если взять точку К внутри круга, то такая точка опишет растяну­тую циклоиду. Пример построения растянутой циклоиды дан на фиг. 106.

Здесь производящая точка К находится на том же радиусе, что и производящая точка нормальной циклоиды. Чтобы определить отдель­ные положения движущейся точки К, достаточно определить направле­ние радиусов, на которых располагается точка К в моменты перемеще­ния круга из центра О в О 1 0 2 0 3 и т. д.

На каждом из этих радиусов необходимо отложить от точек 0 1 , 0 2 , 0 3 и т. д. отрезки, равные ОК. Полученная при этом система точек определит форму кривой-растянутой циклоиды.

Пусть центр круга переместится в точку 0 4 , тогда производящая точка нормальной циклоиды станет в точку 4". Соединив точки 0 4 и 4" получим направление радиуса. Откладывая на радиусе 0 4 -4" из точки 0 4 отрезок, равный OK, определим точку К 4 , принадлежащую растяну­той циклоиде. Если точку К приближать к центру круга, то циклоиды таких производящих точек всё больше и больше будут растягиваться, приближаясь к линии 0 - 0 12 , и, наконец, обратятся в прямую, когда точка К будет взята в центре круга О.

Если точку К удалять за пределы круга, то производящая точка будет описывать петли и форма циклоиды будет сжатой.

Подобный пример представлен на фиг. 107. Из чертежа видно, что способ построения сжатой циклоиды аналогичен построению растянутой циклоиды.

Эпициклоида . Эпициклоидой называется кривая, которую описывает точка круга, перекатывающегося без скольжения по направляющему кругу.

Пусть образующий круг диаметра d перекатывается по направляющему кругу диа­метра D. Пусть точка а, ле­жащая на радиусе Oa, будет производящей (фиг. 108).

Построение точек эпици­клоиды подобно построению циклоиды. При качении произ­водящая точка опишет цикл кривой и после одного обо­рота круга переместится из точки а в точку 12, удалив­шись от первоначального по­ложения по дуге направляю­щего круга на?d.

В практике откладывают дугу путём построения в цен­тре О угла а, равного 360° d/D.

Для определения проме­жуточных положений произво­дящей точки делят образую­щий круг и дугу направляю­щего круга, соответственно углу?, на 12 равных частей. Затем из цен­тра О 0 через точки деления образующего круга проводят концентри­ческие дуги возвышения производящей точки, а через точки деления направляющего круга-лучи.

Пересечение лучей с линией центров определит двенадцать после­довательных положений центра образующей круга. Как и в циклоиде, при перемещении образующего круга на 1/12 цикла, произойдёт переме­щение его центра из О в О 1 которому будет соответствовать первое положение производящей точки на дуге возвышения, отмеченное точ­кой 1. Если центр образующего круга переместится ещё на 1 / 12 своего пути и станет в точку 0 2 , то образующий круг пройдёт путь а-2, рав­ный длине дуги (2/12)?d направляющему кругу, а производящая точка займёт положение, отмеченное точкой 2"-на пересечении дуги, прове­дённой из центра 0 2 радиусом d/2, со второй дугой возвышения.

Производя такие же построения для последующих положений центра, определяют соответствующие положения производящей точки, а сле­довательно, и кривую-эпициклоиду.

Если образующий круг будет перемещаться и дальше по направ­ляющему, то производящая точка опишет ещё одну эпициклоиду.

В рассмотренном примере приведено построение эпициклоиды для соотношения диаметров образующего и направляющего кругов, равных

d/D=1/2. В этом случае производящая точка а после второго цикла

займёт своё исходное положение.

Это отношение показывает, что производящая точка а придёт в ис­ходное положение на направляющем круге, когда производящий круг диаметра d сделает два оборота и обернётся вокруг направляющего круга один раз. Производящая точка а опишет при этом две эпицикло­иды и совпадёт с направляющим кругом в двух диаметрально противо­положных точках.

Предположим, что отношение d/D=2/3 .

В этом случае производящая точка а придёт в исходное положение после того, как производящий круг диаметра d, сделав три оборота, обернётся вокруг направляющего круга диаметра D два раза. Произво­дящая точка а опишет три эпициклоиды и на пути перемещения совпа­дёт с направляющим кругом в трёх равноудалённых точках.

Когда отношение d/D есть целое число, например d/D=5/1, то произ­водящая точка а займёт исходное положение на направляющем круге после того, как производящий круг диаметра, сделав один оборот, обер­нётся вокруг направляющего круга диаметра d пять раз. Производящая точка опишет при этом одну эпициклоиду и, перемещаясь, будет иметь с направляющим кругом только одну точку совмещения, соответствующую исходному её положению.

В практике встречаются отношения d/D, составляющие неправильную

дробь, как, например, 2/3, 5/3, 7/3 и т. д.

Из рассмотренных примеров видно, что отношение d/D можно пред­ставить в виде равенства d/D=n/n 1 , где n 1 -число оборотов образующего

круга по направляющему или число эпициклоид, описанных производя­щей точкой, либо число касаний этой точки с направляющим кругом до совмещения её во всех этих случаях с начальным положением. Одно­временно n показывает число перекатываний образующего круга по направляющему (до момента совмещения производящей точки с её начальным положением).

Гипоциклоида . Гипоциклоидой называется кривая, которую опи­сывает производящая точка, лежащая на образующем круге, катя­щемся без скольжения, внутри другого круга, называемого направляющим.

Построение точек гипоциклоиды производится тем же способом, что и эпициклоиды (фиг. 109).

Эвольвента (развёртка круга) . Эвольвентой называется кривая, кото­рая описывается любой точкой прямой, катящейся пo кругу без сколь­жения.

Образующей здесь является прямая, а направляющей-круг. Если гибкую нить, обёртывающую круг диаметром d (фиг. 110), разматывать с некоторым постоянным натяжением, то конец её, обозначенный точ­кой 1, опишет кривую 1, /, //, III ... VIII, называемую эвольвентой или развёрткой.

Отрезки нити 2-1, 3-II, 4-III и т. д.-касательные к точкам 2, 3, 4..., равны соответственным дугам 2-1, 3-1, 4-1 и т. д. раз­вёртываемого круга.

Для построения эвольвенты разделим данную окружность на равное число частей, например восемь. Из точек деления проводим касательные перпендикулярно к радиусам. На прямой 1-VIII откладываем отрезок,

равный?d, и делим его на 8 равных частей. На промежуточных каса­тельных откладываем соответственные отрезки выпрямленных дуг. Так, например, на касательной к точке 2 откладываем отрезок, равный 1-1", и получим точку I. Отложив на касательной в точке 3 отрезок, равный 1-2", получим точку II и т. д.

Эвольвента применяется для вычерчивания профилей зубцов зубча­тых колёс.

Кардиоида. Если через точку, взятую на окружности, провести во всех направлениях лучи, пересекающие эту окружность, и из каждой точки пересечения отложить вдоль каждого луча в обе стороны отрезки, равные диаметру этой окружности, то получим точки кривой, называе­мой кардиоидой. Для построения кардиоиды возьмём на окружности диаметра d точку К (фиг. 111) и проведём под произвольными углами a 1 , a 2 т. д. лучи K1, K2, КЗ.

Из точек 1, 2, 3 и т. д. откладываем ня лучах в обе стороны отрезки, равные диаметру d. По одну сторону от точки К получим точки /, //, III и т. д., по другую-/", //", К, принадлежащие кардиоиде.

В машиностроении кардиоида применяется при изготовлении кулач­ков и других деталей.

Синусоида. Для построения синусоиды (фиг. 112) делим окружность на произвольное число равных частей, в данном примере на 12. На

такое же число частей делим прямую АВ, величина которой равна длине окружности?d. В точках деления прямой AB по перпендикулярам к ней откладываем полухорды 1к, 2m и т. д., пропорциональные синусам центральных углов к01, m02 и т. д. Полученные точки 1, 2, 3 и т. д. соединяем по лекалу плавной кривой. Синусоида может быть сжатой или растянутой. В первом случае AB?d.

Синусоидальными кривыми пользуются при исследовании гармони­ческих колебательных процессов, происходящих в электрических маши­нах, аппаратах, для построения кулачков и т. п.

Политропа . Политропой называется кривая, выраженная уравнением ух n =c, где c - постоянная величина. Для построения политропы по её показателю n и точке P, принадлежащей этой кривой (фиг. 113), прово­дим прямую OA под произвольным углом а к оси ОХ и прямую OB под углом? к оси OY. Угол? определяется из уравнения: 1+tg?= (l+ tg?) 2 . Затем через точку P проводим прямые параллельно осям ОХ и OY до пересечения с OA в точке а и с OY в точке е. Потом из то­чек а и e проводим к ОХ и ОУ под углом 45° прямые, засекающие точки а" и e". Далее через полученные точки проводим прямые парал­лельно осям до их взаимного пересечения в точке 1, которая и будет принадлежать политропе.

Чтобы построить точку 2, отмечаем на пересечении прямой e"l с осью OY точку К. Из точки К проводим параллельно прямой ee" прямую KK" из a"-прямую a"m параллельно Ра, а из m-прямую mm" параллельно aa". Проведя затем из точек m" и к" прямые, параллельные осям OY и OX, получим на их пересечении точку 2. Остальные точки политропы строятся по аналогии.

Политропа применяется при исследовании тепловых двигателей (построение индикаторной диаграммы); при этом показатель степени n при­нимается в пределах 1,1 -1,4. При n= 1 кривая становится равнобокой гиперболой.