Кривая фазового равновесия (в плоскости Р, Т) может в некоторой точке окончиться (рис. 16); такая точка называется критической, а соответствующие ей температура и давление - критической температурой и критическим давлением. При температурах выше и при давлениях, больших не существует различных фаз, и тело всегда однородно.

Можно сказать, что в критической точке исчезает различие между обеими фазами. Понятие о критической точке было впервые введено Д. И. Менделеевым (1860).

В координатах Т, V диаграмма равновесия при наличии критической точки выглядит так, как это изображено на рис. 17. По мере приближения температуры к ее критическому значению удельные объемы находящихся друг с другом в равновесии фаз сближаются и в критической точке (К на рис. 17) совпадают. Аналогичный вид имеет диаграмма в координатах Р, V.

При наличии критической точки между всякими двумя состояниями вещества может быть произведен непрерывный переход, при котором ни в какой момент не происходит расслоения на две фазы - для этого надо менять состояние вдоль какой-либо кривой, огибающей критическую точку и нигде не пересекающей кривую равновесия. В этом смысле при наличии критической точки становится условным самое понятие о различных фазах, и невозможно во всех случаях указать, какие состояния являются одной фазой, а какие - другой. Строго говоря, можно говорить о двух фазах лишь тогда, когда они существуют обе одновременно, соприкасаясь друг с другом, т. е. в точках, лежащих на кривой равновесия.

Ясно, что критическая точка может существовать лишь для таких фаз, различие между которыми имеет лишь чисто количественный характер. Таковы жидкость и газ, отличающиеся друг от друга лишь большей или меньшей ролью взаимодействия между молекулами.

Такие же фазы, как жидкость и твердое тело (кристалл) или различные кристаллические модификации вещества, качественно различны между собой, так как отличаются своей внутренней симметрией. Ясно, что о всяком свойстве (элементе) симметрии можно сказать только либо, что оно есть, либо, что его нет; оно может появиться или исчезнуть лишь сразу, скачком, а не постепенно. В каждом состоянии тело будет обладать либо одной, либо другой симметрией, и потому всегда можно указать, к которой из двух фаз оно относится. Критическая точка, следовательно, для таких фаз не может существовать, и кривая равновесия должна либо уходить на бесконечность, либо заканчиваться, пересекаясь с кривыми равновесия других фаз.

Обычная точка фазового перехода не представляет собой в математическом отношении особенности для термодинамических величин вещества. Действительно, каждая из фаз может существовать (хотя бы как метастабильная) и по другую сторону от точки перехода; термодинамические неравенства в этой точке не нарушаются. В точке перехода химические потенциалы обеих фаз равны друг другу: ; для каждой же из функций эта точка ничем не замечательна.

Изобразим в плоскости Р, V какую-либо изотерму жидкости и газа, т. е. кривую зависимости Р от V при изотермическом расширении однородного тела на рис. 18). Согласно термодинамическому неравенству есть убывающая функция V. Такой наклон изотерм должен сохраниться и на некотором протяжении за точками их пересечения с кривой равновесия жидкости и газа (точки b и участки изотерм соответствуют метастабильным перегретой жидкости и переохлажденному пару, в которых термодинамические неравенства по-прежнему соблюдаются (полностью же равновесному изотермическому изменению состояния между точками b не отвечает, конечно, горизонтальный отрезок на котором происходит расслоение на две фазы).

Если учесть, что точки имеют одинаковую ординату Р, то ясно, что обе части изотермы не могут перейти друг в друга непрерывным образом, и между ними должен быть разрыв. Изотермы заканчиваются в точках (с и d), в которых нарушается термодинамическое неравенство, т. е.

Построив геометрическое место точек окончания изотерм жидкости и газа, мы получим кривую АКБ, на которой нарушаются (для однородного тела) термодинамические неравенства; она ограничивает область, в которой тело ни при каких условиях не может существовать как однородное. Области между этой кривой и кривой равновесия фаз отвечают перегретой жидкости и переохлажденному пару. Очевидно, что в критической точке обе кривые должны касаться друг друга. Из точек же, лежащих на самой кривой АКБ, реально существующим состояниям однородного тела отвечает лишь критическая точка К - единственная, в которой эта кривая соприкасается с областью устойчивых однородных состояний.

В противоположность обычным точкам фазового равновесия критическая точка является в математическом отношении особой точкой для термодинамических функций вещества (то же самое относится ко всей кривой АКВ, ограничивающей область существования однородных состояний тела). Характер этой особенности и поведение вещества вблизи критической точки будут рассмотрены в § 153.

Жидкость, например вода, может находиться в твердом, жидком и газообразном состоянии, которые называют фазовыми состояниями вещества . В жидкостях расстояния между молекулами примерно на два порядка меньше, чем в газах. В твердом веществе молекулы расположены еще ближе друг к другу. Температура, при которой меняется фазовое состояние вещества (жидкое – твердое, жидкое – газообразное), называется температурой фазового перехода .

Теплотой фазового перехода или скрытой теплотой называется величина теплоты плавления или испарения вещества. На рис.6.9 представлена зависимость температуры воды от количества получаемого тепла в калориях. Видно, что при температурах 0 0 С и 100 0 С происходит изменение фазового состояния воды, а температура воды при этом не изменяется. Поглощенное тепло расходуется на изменение фазового состояния вещества. Физически это означает, что при нагревании твердого тела, например, льда при 0 0 С происходит увеличение амплитуды колебаний молекул друг относительно друга. Это приводит к возрастанию их потенциальной энергии, и, следовательно, к ослаблению или разрыву межмолекулярных связей. Молекулы или их скопления получают возможность перемещаться друг относительно друга. Лед превращается при неменяющейся температуре в жидкость. После изменения его агрегатного состояния из твердого в жидкое, поглощение теплоты приводит к возрастанию температуры по линейному закону. Так происходит до 100 0 С. Затем энергия колеблющихся молекул возрастает настолько, что молекулы способны преодолеть притяжение остальных молекул. Они бурно отрываются не только от поверхности воды, но и образуют пузыри из пара по всему объему жидкости. Они поднимаются к поверхности под действием выталкивающей силы и выбрасываются наружу. В этом фазовом переходе вода превращается в пар. Далее опять поглощение теплоты приводит к возрастанию температуры пара по линейному закону.

Теплота, выделяющаяся или поглощающаяся при фазовом переходе, зависит от массы вещества.

При переходе вещества массы m из жидкого в газообразное состояние или, наоборот, из газообразного в жидкое поглощается или выделяется теплота Q:

Удельной теплотой парообразованияr Q , необходимое для превращения в пар 1 кг жидкости при температуре кипения:

При переходе вещества из твердого состояния в жидкое и обратно поглощается или передается количество теплоты:

Удельной теплотой плавления q называется количество теплоты Q , необходимое для превращения 1 кг твердого вещества (например, льда) в жидкость при температуре плавления:

Удельная теплота плавления и парообразования измеряется в Дж/кг. С ростом температуры удельная теплота парообразования уменьшается, а при критической температуре становится равной нулю.



Для воды удельная теплота плавления и парообразования соответственно составляют:

, .

Здесь используется внесистемная единица измерения количества энергии – калория, равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 °C при нормальном атмосферном давлении 101.325 кПа.

Как видно на рис.6.17 для нагревания льда от -20 0 С до 0 0 С необходимо в восемь раз меньше энергии, чем для превращения ее из льда в воду, и в 54 раза меньше, чем превратить воду в пар.

Рис.6.17. Зависимость температуры от подводимой к системе теплоты

для 1 кг льда.

Температура, при которой теряется различие между паром и жидкостью, называется критической . На рис. 6.18 иллюстрируется понятие критической температуры на зависимости плотности воды и пара от температуры. При нагревании воды в закрытой пробирке, как видно на рис.6.18, плотность воды с ростом температуры уменьшается из-за объемного расширения воды, а плотность пара возрастает. При некоторой температуре, которая и называется критической, плотность пара становится равной плотности воды.

У каждого вещества своя критическая температура. Для воды, азота и гелия критические температуры соответственно составляют:

, , .

Рис.6.18. Критическая точка на графике зависимости

плотности пара и воды от температуры.

Рис.6.19. Зависимость давления от объема p=p(V) для пара. В области, выделенной пунктиром, газообразное и жидкое состояния вещества существуют одновременно.

На рис.6.19 представлена зависимость давления пара от его объема Р=Р(V). Уравнение состояния пара при низком давлении и вдали от температуры его фазового перехода (выше точки b 0 на рис.6.19) близко к уравнению состояния идеального газа (то есть в этом случае газ можно считать идеальным и его поведение хорошо описывается законом Бойля - Мориотта). С уменьшением температуры зависимость Р=Р(V) начинает отличаться от ее вида для идеального газа. На участке а – b происходит конденсация пара и давление пара почти не меняется, а зависимость на рис.6.19 представляет собой медленно спадающую линейную функцию. Ниже точки а, весь пар становится жидкостью, и далее происходит уже сжатие жидкости.В этом случае, как видно на рис.6.11, давление при очень незначительном уменьшении объема, поскольку жидкость практически несжимаема, резко возрастает.

Поскольку температура фазового перехода зависит от давления газа, можно представить фазовые переходы, используя зависимость давления от температуры Р=Р(Т) на рис.6.20. Изменение фазового состояния вещества происходит на границе пар - жидкость, твердое тело - жидкость, твердое тело - пар. С разных сторон этих граничных линий газ находится в разном агрегатном состоянии – твердом, жидком или газообразном.

Рис.6.20. Фазовая диаграмма для воды.

Точка пересечения трех линий на рис.6.12 называется тройной точкой . Например, вода при температуре 0 0 С и давлении атм., имеет тройную точку, а углекислый газ имеет тройную точку при температуре и давлении P=5,1 атм. На рис.6.20 видно, что возможен переход вещества из газообразного в твердое состояние и наоборот, минуя жидкую стадию.

Переход из твердого состояния вещества в газообразное состояние называют сублимацией.

Пример: охлаждение сухим льдом, например, пачек мороженного, находящихся на лотках. В этом случае, как мы неоднократно видели, сухой лед превращается в пар.

При достаточно высоких температурах горизонтальный участок изотермы реального газа (см. рис. 6.4) становится совсем коротким и при некоторой температуре обращается в точку (на рис. 6.4 - точка К). Эту температуру называют критической.

Критической называется температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимся с ней в динамическом равновесии. Каждое вещество имеет свою критическую температуру. Например, критическая температура для углекислоты СO 2 равна t K = 31 °С, а для воды - t K = 374 °С.

Критическое состояние

Состояние, соответствующее точке К, в которую обращается горизонтальный участок изотермы при температуре Т = Т к, называют критическим состоянием (критическая точка). Давление и объем в этом состоянии называют критическими. Критическое давление для углекислого газа равно 7,4 10 6 Па (73 атм), а для воды 2,2 10 7 Па (218 атм). В критическом состоянии жидкость имеет максимальный объем, а насыщенный пар - максимальное давление.

Плотность жидкости и ее насыщенного пара при критической температуре

Мы уже отмечали, что при увеличении температуры возрастает плотность насыщенного пара (см. § 6.3). Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие ее расширения при нагревании.

В таблице 2 приведены значения плотности воды и ее насыщенного пара для разных температур.

Таблица 2

Если на одном рисунке начертить кривые зависимости плотности жидкости и ее насыщенного пара от температуры, то для жидкости кривая пойдет вниз, а для пара - вверх (рис. 6.6). При критической температуре обе кривые сливаются, т. е. плотность жидкости становится равной плотности пара. Различие между жидкостью и паром исчезает.

Рис. 6.6

Газ и пар

Мы много раз употребляли слова «газ» и «пар». Эти термины возникли в те времена, когда считалось, что пар может быть превращен в жидкость, а газ нет. После того как все газы были сконденсированы (см. § 6.7), для такой двойственной терминологии не осталось оснований. Пар и газ - это одно и то же, между ними принципиальной разницы нет. Когда говорят о паре какой-нибудь жидкости, то обычно имеют в виду, что его температура меньше критической и сжатием его можно превратить в жидкость. Только по привычке мы говорим о водяном паре, а не о водяном газе, о насыщенном паре, а не о насыщенном газе и т. д.

Экспериментальное исследование критического состояния

Эксперименты по изучению критического состояния выполнил в 1863 г. русский ученый М. П. Авенариус. Прибор, с помощью которого можно наблюдать критическое состояние (прибор Авенариуса), состоит из воздушной ванны (рис. 6.7) и находящейся внутри ванны запаянной стеклянной трубочки (ампулы) с жидким эфиром. Объем ампулы (ее вместимость) равен критическому объему эфира, налитого в трубочку. Пространство над эфиром в ампуле заполнено насыщенным паром эфира.

Рис. 6.7

При помощи газовой горелки или другого нагревателя воздушную ванну подогревают. За состоянием эфира наблюдают через стеклянное окошко в приборе.

При комнатной температуре можно отчетливо видеть границу между жидкостью и паром (рис. 6.8, а). По мере приближения к критической температуре объем жидкого эфира увеличивается, а граница раздела жидкость - пар становится слабовыраженной, неустойчивой (рис. 6.8, б).

Рис. 6.8

При подходе к критическому состоянию граница между ними исчезает совсем (рис. 6.8, в).

При охлаждении появляется плотный туман, заполняющий всю трубочку (рис. 6.8, г). Это образуются капельки жидкости. Далее они сливаются вместе, и опять возникает граница раздела между жидкостью и паром (рис. 6.8, д).

Для опыта выбран эфир, так как он имеет сравнительно низкое критическое давление (около 36 атм). Критическая температура его тоже невелика: 194 °С.

Если сжимать газ, поддерживая его температуру выше критической (см. рис. 6.4, изотерма Т 3), причем, как и раньше, начать с очень больших объемов, то уменьшение объема приведет к возрастанию давления в соответствии с уравнением состояния идеального газа. Однако если при температуре ниже критической при определенном давлении происходила конденсация пара, то теперь образования жидкости в сосуде наблюдаться не будет. При температуре выше критической газ нельзя обратить в жидкость ни при каких давлениях.

В этом и состоит основное значение понятия критической температуры.

Диаграмма равновесных состояний газа и жидкости

Еще раз вернемся к рисунку 6.4, на котором изображены изотермы реального газа. Соединим все левые концы горизонтальных участков изотерм, т. е. те точки, которые соответствуют окончанию конденсации насыщенного пара и началу сжатия жидкости. Получится плавная кривая, оканчивающаяся в критической точке К. На рисунке 6.9 это кривая ART. Слева от кривой АК, между ней и критической изотермой (участок изотермы СК), расположена область, соответствующая жидкому состоянию вещества (на рис. 6.9 эта область выделена горизонтальной штриховкой). Каждой точке этой области соответствуют параметры р, V и Т, характеризующие жидкость в состоянии теплового равновесия.

Рис. 6.9

Соединим теперь плавной кривой все правые концы горизонтальных участков изотерм. Эта кривая на рисунке 6.9 тоже заканчивается в точке К. Две линии АК и ВК ограничивают область, каждая точка которой соответствует состоянию равновесия между жидкостью и насыщенным паром (на рис. 6.9 эта область выделена вертикальной штриховкой). За исключением области жидкого состояния и области равновесия жидкости с газом вся остальная область соответствует газообразному состоянию вещества. На рисунке 6.9 она выделена косой штриховкой.

В результате получилась диаграмма равновесных состояний газа и жидкости. Каждой точке на этой диаграмме соответствует определенное состояние системы: газ, жидкость или равновесие между жидкостью и газом.

При критической температуре свойства жидкости и насыщенного пара становятся неразличимыми. Выше критической температуры жидкость не может существовать.

| | |
Критическая точка - сочетание значений температуры и давления (или, что эквивалентно, молярного объёма), при которых исчезает различие в свойствах жидкой и газообразной фаз вещества.

Критическая температура фазового перехода - значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Физическое значение

В критической точке плотность жидкости и её насыщенного пара становятся равны, а поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар.

Для смеси веществ критическая температура не является постоянной величиной и может быть представлена пространственной кривой (зависящей от пропорции составляющих компонентов), крайними точками которой являются критические температуры чистых веществ - компонентов рассматриваемой смеси.

Критической точке на диаграмме состояния вещества соответствуют предельные точки на кривых равновесия фаз, в окрестностях точки фазовое равновесие нарушается, происходит потеря термодинамической устойчивости по плотности вещества. По одну сторону от критической точки вещество однородно (обычно при), а по другую - разделяется на жидкость и пар.

В окрестностях точки наблюдаются критические явления: из-за роста характеристических размеров флуктуаций плотности резко усиливается рассеяние света при прохождении через вещество - при достижении размеров флуктуаций порядков сотен нанометров, т. е. длин волн света, вещество становится непрозрачным - наблюдается его критическая опалесценция. Рост флуктуаций приводит также к усилению поглощения звука и росту его дисперсии, изменению характера броуновского движения, аномалиям вязкости, теплопроводности, замедлению установления теплового равновесия и т. п.

На этой типичной фазовой диаграмме граница между жидкой и газообразной фазой изображена в виде кривой, начинающейся в тройной точке, и заканчивающейся в критической точке.

История

Впервые явление критического состояния вещества было обнаружено в 1822 году Шарлем Каньяром де Ла-Туром, а в 1860 году повторно открыто Д.И.Менделеевым. Систематические исследования начались с работ Томаса Эндрюса. Практически явление критической точки можно наблюдать при нагревании жидкости, частично заполняющей запаянную трубку. По мере нагрева мениск постепенно теряет свою кривизну, становясь всё более плоским, а при достижении критической температуры перестает быть различимым.

Параметры критических точек некоторых веществ
Вещество
Единицы Кельвины Атмосферы см³/моль
Водород 33,0 12,8 61,8
Кислород 154,8 50,1 74,4
Ртуть 1750 1500 44
Этанол 516,3 63,0 167
Диоксид углерода 304,2 72,9 94,0
Вода 647 218,3 56
Азот 126.25 33,5
Аргон 150.86 48,1
Бром 588 102
Гелий 5.19 2,24
Йод 819 116
Криптон 209.45 54,3
Ксенон 289.73 58
Мышьяк 1673
Неон 44.4 27,2
Радон 378
Селен 1766
Сера 1314
Фосфор 994
Фтор 144.3 51,5
Хлор 416.95 76

Критические точки существуют не только для чистых веществ, но и, в некоторых случаях, для их смесей и определяют параметры потери устойчивости смеси (с разделом фаз) - раствор (одна фаза). Примером такой смеси может служить смесь фенол-вода.

Простые газы в критической точке, по некоторым данным, обладают свойством сжатия до сверхвысоких плотностей без роста давления, при условии строгого поддержания температуры, равной критической точке, и высокой степени их чистоты (молекулы инородных газов становятся ядрами перехода в газообразную фазу, что ведет к лавинообразному росту давления). Иными словами, вещество сжимается, как газ, но сохраняет давление, равное таковому в жидкости. Реализация этого эффекта на практике позволит сверхплотное хранение газов.

Критическая точка (термодинамика) Информацию О

Уравнение состояния Термодинамические величины Термодинамические потенциалы Термодинамические циклы Фазовые переходы См. также «Физический портал»

Критическая температура фазового перехода - значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении .

Физическое значение

В критической точке плотность жидкости и её насыщенного пара становятся равны, а поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар.

Для смеси веществ критическая температура не является постоянной величиной и может быть представлена пространственной кривой (зависящей от пропорции составляющих компонентов), крайними точками которой являются критические температуры чистых веществ - компонентов рассматриваемой смеси.

Критической точке на диаграмме состояния вещества соответствуют предельные точки на кривых равновесия фаз, в окрестностях точки фазовое равновесие нарушается, происходит потеря термодинамической устойчивости по плотности вещества. По одну сторону от критической точки вещество однородно (обычно при texvc не найден; См. math/README - справку по настройке.): T > T_{crit} ), а по другую - разделяется на жидкость и пар.

В окрестностях точки наблюдаются критические явления: из-за роста характеристических размеров флуктуаций плотности резко усиливается рассеяние света при прохождении через вещество - при достижении размеров флуктуаций порядков сотен нанометров , т. е. длин волн света, вещество становится непрозрачным - наблюдается его критическая опалесценция . Рост флуктуаций приводит также к усилению поглощения звука и росту его дисперсии , изменению характера броуновского движения , аномалиям вязкости , теплопроводности , замедлению установления теплового равновесия и т. п.

История

Впервые явление критического состояния вещества было обнаружено в 1822 году Шарлем Каньяром де Ла-Туром , а в 1860 году повторно открыто Д.И.Менделеевым . Систематические исследования начались с работ Томаса Эндрюса . Практически явление критической точки можно наблюдать при нагревании жидкости, частично заполняющей запаянную трубку. По мере нагрева мениск постепенно теряет свою кривизну, становясь всё более плоским, а при достижении критической температуры перестает быть различимым.

Параметры критических точек некоторых веществ
Вещество Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): T_{crit} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): P_{crit} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V_{crit}
Единицы Кельвины Атмосферы см³/моль
Водород 33,0 12,8 61,8
Кислород 154,8 50,1 74,4
1750 1500 44
Этанол 516,3 63,0 167
Диоксид углерода 304,2 72,9 94,0
Вода 647 218,3 56
Азот 126.25 33,5
Аргон 150.86 48,1
Бром 588 102
Гелий 5.19 2,24
Йод 819 116
Криптон 209.45 54,3
Ксенон 289.73 58
Мышьяк 1673
Неон 44.4 27,2
Радон 378
Селен 1766
Сера 1314
Фосфор 994
Фтор 144.3 51,5
Хлор 416.95 76

Критические точки существуют не только для чистых веществ, но и, в некоторых случаях, для их смесей и определяют параметры потери устойчивости смеси (с разделом фаз) - раствор (одна фаза). Примером такой смеси может служить смесь фенол-вода .

Моноизотопный газ при критической температуре неограниченно сжимается до перекрытия электронных оболочек соседних атомов без роста давления.

Напишите отзыв о статье "Критическая точка (термодинамика)"

Отрывок, характеризующий Критическая точка (термодинамика)

– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».
– Ты знаешь, Север, у меня складывается впечатление, что церковь переврала и уничтожила ВСЮ мировую историю. Зачем это было нужно?
– Чтобы не разрешить человеку мыслить, Изидора. Чтобы сделать из людей послушных и ничтожных рабов, которых по своему усмотрению «прощали» или наказывали «святейшие». Ибо, если человек узнал бы правду о своём прошлом, он был бы человеком ГОРДЫМ за себя и своих Предков и никогда не надел бы рабский ошейник. Без ПРАВДЫ же из свободных и сильных люди становились «рабами божьими», и уже не пытались вспомнить, кто они есть на самом деле. Таково настоящее, Изидора... И, честно говоря, оно не оставляет слишком светлых надежд на изменение.
Север был очень тихим и печальным. Видимо, наблюдая людскую слабость и жестокость столько столетий, и видя, как гибнут сильнейшие, его сердце было отравлено горечью и неверием в скорую победу Знания и Света... А мне так хотелось крикнуть ему, что я всё же верю, что люди скоро проснутся!.. Несмотря на злобу и боль, несмотря на предательства и слабость, я верю, что Земля, наконец, не выдержит того, что творят с её детьми. И очнётся... Но я понимала, что не смогу убедить его, так как сама должна буду скоро погибнуть, борясь за это же самое пробуждение.
Но я не жалела... Моя жизнь была всего лишь песчинкой в бескрайнем море страданий. И я должна была лишь бороться до конца, каким бы страшным он ни был. Так как даже капли воды, падая постоянно, в силах продолбить когда-нибудь самый крепкий камень. Так и ЗЛО: если бы люди дробили его даже по крупинке, оно когда-нибудь рухнуло бы, пусть даже не при этой их жизни. Но они вернулись бы снова на свою Землю и увидели бы – это ведь ОНИ помогли ей выстоять!.. Это ОНИ помогли ей стать Светлой и Верной. Знаю, Север сказал бы, что человек ещё не умеет жить для будущего... И знаю – пока это было правдой. Но именно это по моему пониманию и останавливало многих от собственных решений. Так как люди слишком привыкли думать и действовать, «как все», не выделяясь и не встревая, только бы жить спокойно.
– Прости, что заставил тебя пережить столько боли, мой друг. – Прервал мои мысли голос Севера. – Но думаю, это поможет тебе легче встретить свою судьбу. Поможет выстоять...
Мне не хотелось об этом думать... Ещё хотя бы чуточку!.. Ведь на мою печальную судьбу у меня оставалось ещё достаточно предостаточно времени. Поэтому, чтобы поменять наболевшую тему, я опять начала задавать вопросы.