Класс: 11

Презентация к уроку

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: вывести формулу для вычисления площадей плоских фигур с помощью определенного интеграла; сформировать навык вычисления площадей плоских фигур с помощью определенного интеграла; повторить известные и сообщить новые сведения из истории интегрального исчисления; подготовка к экзамену; продолжить работу по развитию внимания, речи, логического мышления, аккуратности в записи; совершенствовать графическую культуру; продолжить работу по развитию творческих способностей учащихся; повысить интерес к изучению математики;

Оборудование: мультимедийный проектор, экран, презентация по теме, разработанная в среде Power Point.

Ход урока

I. Организационный момент, сообщение темы и цели урока.

II. Проверка домашнего задания.

Проверка дополнительного домашнего задания (учитель показывает решение на заранее подготовленном рисунке, решение с обратной стороны доски):

Вычислите площадь фигуры, ограниченной графиками функций y = 1+ 3cos(x/2), x = -π/2, x = 3π/2, y = 0

III. Актуализация опорных знаний.

1. Устная работа (Слайды 3-4)

  1. Выразите с помощью интеграла площади фигур, изображенных на рисунках:
  2. Вычислите интегралы:

2. Немного истории. (Слайды 5-9)

Фрагмент компьютерного проекта учащихся на тему «Из истории интегрального исчисления».

1 учащийся

Интеграл – одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным, а с другой – измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.

Само слово интеграл придумал Я. Бернулли (1690 г.). Оно происходит от латинского integero , переводится как приводить в прежнее состояние, восстанавливать.

Другие известные вам термины, относящиеся к интегральному исчислению, появились значительно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция» , которое ввел Жозеф Луи Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный».

Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней Греции. Первым известным методом для расчёта интегралов является метод исчерпания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известен. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга.

Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более не создал алгоритма интегрального исчисления.

Труды Архимеда, впервые созданные в 1544 году, явились одним из важнейших отправных пунктов развития интегрального исчисления.

2 учащийся

Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления.

Более близко и точно к понятию интеграл подошел Исаак Ньютон . Он первый построил дифференциаль­ное и интегральное исчисления и назвал его "Методом флюксий..." (1670-1671 гг., опубл. 1736 г.). Переменные величины Ньютон назвал флюентами (текущими величинами, от лат . fluo – теку). Скорости изменения флюент Ньютон – флюксиями , а необходимые для вычисления флюксий бесконечно малые изменения флюент – "моментами " (у Лейбница они назывались дифференциалами). Таким образом, Ньютон положил в основу понятия флюксий (производной) и флюенты (первообразной, или неопределённого интеграла).

Это сразу позволило решать самые разнообразные, математические и физические, задачи.

Одновременно с Ньютоном к аналогичным идеям пришёл другой выдающийся учёный – Готфрид Вильгельм Лейбниц .

Размышляя над философ­скими и математическими вопросами, Лейб­ниц убедился, что самым надежным средством искать и находить истину в науке может стать математика. Знак интеграла (∫), был впервые использован Лейбницем в конце XVII века. Этот символ образовался из буквы S - сокращения слова лат. summa (сумма).

Ньютон и Лейбниц разработали две трактовки понятия обычного определенного интеграла.

Ньютон трактовал определенный интеграл как разность соответствующих значений первообразной функции:

,
где F`(x)=f(x) .

Для Лейбница определенный интеграл был суммой всех бесконечно малых дифференциалов.

Формулу, которую открыли независимо друг от друга Ньютон и Лейбниц назвали формула Ньютона – Лейбница .

Таким образом, понятие интеграл было связано с именами знаменитых ученых: Ньютон, Лейбниц, Бернулли, положивших основу современного математического анализа.

IV. Объяснение нового материала.

С помощью интеграла можно вычислять площади не только криволинейных трапеций, но и плоских фигур более сложного вида.

Пусть фигура P ограничена прямыми х = a , x = b и графиками функций y = f (x ) и y = g (x ), причем на отрезке [a ;b ] выполняется неравенство g (x )f (x ).

Для вычисления площади фигуры будем рассуждать следующим образом. Выполним параллельный перенос фигуры P на m единиц вверх так, чтобы фигура P оказалась расположенной в координатной плоскости выше оси абсцисс.

Теперь она ограничена сверху и снизу графиками функций y = f (x )+m и

y = g (x )+m , причем обе функции непрерывны и неотрицательны на отрезке [a ;b ].

Полученную фигуру обозначим ABCD . Ее площадь можно найти как разность площадей фигур:

S ABCD = S aDCb – S aABb = =
=

Таким образом, площадь фигуры S, ограниченной прямыми х = a , x = b и графиками функций y = f (x ) и y = g (x ), непрерывных на отрезке [a ;b ] и таких, что для всех х из отрезка [a ;b ] выполняется неравенство g (x )f (x ), вычисляется по формуле

Пример. (Слайд 11) Вычислите площадь фигуры, ограниченной линиями y = x , y = 5 – x , x = 1, x = 2.

Подберите из данных формул для вычисления площади фигуры ту, которая подходит к одному из шести чертежей. (Слайд 14)

Задание 3. (Слайд 15) Вычислите площадь фигуры, ограниченной графиком функции y = 0,5х 2 + 2, касательной к этому графику в точке с абсциссой х = -2 и прямой х = 0.

1. Составим уравнение касательной к графику функции y = 0,5х 2 + 2 в точке с абсциссой х = -2:

y = f (x 0 ) + f "(x 0 )(x – x 0 )
f (-2) = 0,5∙(-2) 2 + 2 = 4
f "(x ) = (0,5х 2 + 2)"= x
f "(-2) = -2
y = 4 – 2(x + 2)
y = -2x

2. Построим графики функций.

3. Найдем площадь фигуры АВС .

VI. Подведение итогов.

  • формула для вычисления площадей плоских фигур;
  • запись формул площадей плоских фигур с помощью определенного интеграла;
  • повторение уравнения касательной к графику функции и решения уравнения с модулем;
  • выставление оценок учащимся.

VII. Домашнее задание.

  1. п. 4 стр. 228-230;
  2. №1025(в, г), №1037(в, г), №1038(в, г)

учебник: А. Г. Мордкович «Алгебра и начала анализа 10–11»

С помощью определенного интеграла можно вычислять площади плоских фигур, так как эта задача всегда сводится к вычислению площадей криволинейных трапеций.

Площадь всякой фигуры в прямоугольной системе координат может быть составлена из площадей криволинейных трапеций, прилегающих к оси Ох или к оси Оу .

Задачи на вычисление площадей плоских фигур удобно решать по следующему плану:

1. По условию задачи сделать схематический чертеж

2. Представить искомую площадь как сумму или разность площадей криволинейных трапеций. Из условия задачи и чертежа определяют пределы интегрирования для каждой составляющей криволинейной трапеции.

3. Записывают каждую функцию в виде y = f(x) .

4. Вычисляют площади каждой криволинейной трапеции и площадь искомой фигуры.

Рассмотрим несколько вариантов расположения фигур.

1). Пусть на отрезке [a; b ] функция f(x) принимает неотрицательные значения. Тогда график функции y = f(x) расположен над осью Ох .

S =

2). Пусть на отрезке [a; b ] неположительная непрерывная функция f(x). Тогда график функции y = f(x) расположен под осью Ох :

Площадь такой фигуры вычисляется по формуле:S = -

Площадь такой фигуры вычисляется по формуле:S =

4). Пусть на отрезке [a; b ] функция f(x) принимает как положительные, так и отрицательные значения. Тогда отрезок [a; b ] нужно разбить на такие части, в каждой из которых функция не изменяет знак, затем по приведенным выше формулам вычислить соответствующие этим частям площади и найденные площади сложить.

S 1 = S 2 = - S ф = S 1 + S 2

Из определения следует, что для неотрицательной функции f(x) определенный интегралравен площади криволинейной трапеции, ограниченной кривой у =f(x), прямыми х = а, х =bи осью абсциссy= 0 (рисунок 4.1).

Если функция – f(x) неположительна, то определенный интеграл
равен площади соответствующей криволинейной трапеции, взятой со знаком минус (рисунок 4.7).

Рисунок 4.7 – Геометрический смысл определенного интеграла для неположительной функции

Для произвольной непрерывной функции f(x) определенный интеграл
равен сумме площадей криволинейных трапеций, лежащих под графиком функцииf(x) и выше оси абсцисс, за вычетом суммы площадей криволинейных трапеций, лежащих над графиком функцииf(x) и ниже оси абсцисс (рисунок 4.8).

Рисунок 4.8 – Геометрический смысл определенного интеграла для произвольной непрерывной функции f(x) (знаком «плюс» помечена площадь, которую прибавляют, а «минусом» - та, которую вычитают).

При вычислении на практике площадей криволинейных фигур часто используется следующая формула:
, гдеS– площадь фигуры, заключенной между кривыми y = f 1 (x) и y = f 2 (x) на отрезке [а,b], а f 1 (x) и f 2 (x) - непрерывные функции, заданные на этом отрезке, такие, что f 1 (x) ≥ f 2 (x) (см. рисунки 4.9, 4.10).

При изучении экономического смысла производной было выяснено, что производная выступает как скорость изменения некоторого экономического объекта или процесса во времени или относительного другого исследуемого фактора. Чтобы установить экономический смысл определенного интеграла, необходимо саму эту скорость рассмотреть в виде функции от времени или другого фактора. Тогда, так как определенный интеграл представляет собой изменение первообразной, мы получим, что в экономике он оценивает изменение этого объекта (процесса) за определенный период времени (или при определенном изменении другого фактора).

Например, если функция q=q(t) описывает производительность труда в зависимости от времени, то определенный интеграл от этой функции
представляет собой объем выпущенной продукцииQза промежуток времени отt 0 доt 1 .

Методы вычисления определенных интегралов основаны на рассмотренных ранее методах интегрирования (доказательств проводить не будем).

При нахождении неопределенного интеграла мы пользовались методом замены переменной, основанным на формуле: f(x)dx= =f((t))`(t)dt, где x =(t) - функция, дифференцируемая на рассматриваемом промежутке. Для определенного интеграла формула замены переменной примет вид
, где
и для всех.

Пример 1 . Найти

Пусть t= 2 –x 2 . Тогдаdt= -2xdxиxdx= - ½dt.

При х = 0 t= 2 – 0 2 = 2. При х = 1t= 2 – 1 2 = 1. Тогда

Пример 2 . Найти

Пример 3 . Найти

Формула интегрирования по частям для определенного интеграла примет вид:
, где
.

Пример 1 . Найти

Пусть u=ln(1 +x),dv=dx. Тогда

Пример 2 . Найти

Вычисление площадей плоских фигур с помощью определенного интеграла

Пример 1. Найти площадь фигуры, ограниченной линиями у = х 2 – 2 иy=x.

График функции y= х 2 – 2 представляет собой параболу с точкой минимума приx= 0,y= -2; ось абсцисс пересекается в точках
. График функции у = х – прямая, биссектриса неотрицательной координатной четверти.

Найдем координаты точек пересечения параболы у = х 2 – 2 и прямой у = х, решив систему этих уравнений:

х 2 – х - 2 = 0

х = 2; y= 2 или х = -1;y= -1

Таким образом, фигуру, площадь которой необходимо найти, можно представить на рисунке 4.9.

Рисунок 4.9 – Фигура, ограниченная линиями у = х 2 – 2 иy=x

На отрезке [-1, 2] х ≥ х 2 – 2 .

Воспользуемся формулой
, полагая f 1 (х) = х; f 2 (х) = х 2 – 2;a= -1;b= 2.

Пример 2. Найти площадь фигуры, ограниченной линиями у = 4 - х 2 иy= х 2 – 2x.

График функции y = 4 - х 2 представляет собой параболу с точкой максимума приx= 0,y= 4; ось абсцисс пересекается в точках 2 и -2. График функции у = х 2 – 2x– парабола с точкой минимума при 2x- 2 = 0, х = 1;y= -1; ось абсцисс пересекается в точках 0 и 2.

Найдем координаты точек пересечения кривых:

4 - х 2 = х 2 – 2х

2х 2 – 2х - 4 = 0

х 2 – х - 2 = 0

х = 2; y= 0 или х = -1;y= 3

Таким образом, фигуру, площадь которой необходимо найти, можно предствить на рисунке 4.10.

Рисунок 4.10 - Фигура, ограниченная линиями у = 4 - х 2 иy= х 2 – 2x

На отрезке [-1, 2] 4 - х 2 ≥ х 2 – 2x.

Воспользуемся формулой
, полагая f 1 (х) = 4 - - х 2 ; f 2 (х) = х 2 – 2х;a= -1;b= 2.

Пример 3. Найти площадь фигуры, ограниченной линиями у = 1/х;y= х 2 иy= 4 в неотрицательной координатной четверти.

График функции у = 1/х представляет собой гиперболу, при положительных х она выпукла вниз; оси координат являются асимптотами. График функции у = х 2 в неотрицательной координатной четверти – ветвь параболы с точкой минимума в начале координат. Эти графики пересекаются при 1/х = х 2 ; х 3 = 1; х = 1; у = 1.

Прямую y= 4 график функции у = 1/х пересекает при х =1/4, а график функции у = х 2 при х = 2 (или -2).

Таким образом, фигуру, площадь которой необходимо найти, можно представить на рисунке 4.11.

Рисунок 4.11 - Фигура, ограниченная линиями у = 1/х; y= х 2 иy= 4 в неотрицательной координатной четверти

Искомая площадь фигуры ABCравна разности между площадью прямоугольника АВНЕ, которая равна 4*(2 – ¼) = 7, и суммой площадей двух криволинейных трапеций АСFЕ и СВНF. Вычислим площадь АСFЕ:

Вычислим площадь СВНF:

.

Итак, искомая площадь равна 7 – (ln4 + 7/3) = 14/3 –ln43,28 (ед. 2).

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:


Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому: