Экосистема - информационно саморазвивающаяся, термодинамически открытая совокупность биотических экологических компонентов и абиотических источников вещества и энергии, единство и функциональная связь которых в пределах характерного для определенного участка биосферы времени и пространства (включая биосферу в целом) обеспечивает превышение на этом участке внутренних закономерных перемещений вещества, энергии и информации над внешним обменом (и между соседними аналогичными совокупностями) и на основе этого неопределенно долгую саморегуляцию и развитие целого под управляющим воздействием биотических и биогенных составляющих.

Сложение экосистем в значительной мере зависит от их функциональной «предназначенности» и наоборот. Это замечание исходит из принципа экологической комплементарности (дополнительности): никакая функциональная часть экосистемы (экологический компонент, элемент и т. п.) не может существовать без других функционально дополняющих частей.

Рисунок 1. - Классификация природных экосистем

Закон формирования экосистемы: длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и соответственно приспособлены друг к другу. Это обеспечивает воспроизводство среды обитаний каждого вида и относительно неизменное существование всех экологических компонентов.

Второй экологический закон, по Ю. Н. Куражсковскому: «закон сохранения жизни: жизнь может существовать только в процессе движения через живое тело потока вещества, энергии и информации. Прекращение движения в этом потоке прекращает жизнь». Этот принцип справедлив и для любых экологических образований и вообще многих природных систем, даже непосредственно не связанных с живым.

В начале 70-х гг. Реймерс Н. Ф. сформулировал закон внутреннего динамического равновесия, а затем четыре основных следствия из него. Формулировка закона: вещество, энергия, информация и динамические качества отдельных природных систем (в том числе экосистем) и их иерархии взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены, сохраняющие общую сумму вещественно-энергетических, информационных и динамических качеств систем, где эти изменения происходят, или в их иерархии. Важные следствия из закона внутреннего динамического равновесия:

1. Любое изменение среды (вещества, энергии, информации, динамических качеств экосистем) неизбежно приводит к развитию природных цепных реакций, идущих в сторону нейтрализации произведенного изменения или формирования новых природных систем, образование которых при значительных изменениях среды может принять необратимый характер;

2. Взаимодействие вещественно-энергетических экологических компонентов (энергия, газы, жидкости, субстраты, организмы-продуценты, консументы и редуценты), информации и динамических качеств природных систем количественно нелинейно, т. е. слабое воздействие или изменение одного из показателей может вызвать сильные отклонения в других (и во всей системе в целом);

3. Производимые в крупных экосистемах изменения относительно необратимы - проходя по их иерархии снизу вверх, от места воздействия до биосферы в целом, они меняют глобальные процессы и тем самым переводят их на новый эволюционный уровень;

4. Любое местное преобразование природы вызывает в глобальной совокупности биосферы и в ее крупнейших подразделениях ответные реакции, приводящие к относительной неизменности эколого-экономического потенциала (правило «тришкина кафтана»), увеличение которого возможно лишь путем значительного возрастания энергетических вложений.

Исходя из данных, накопленных экологией, с учетом вышеприведенных обобщений возможно сформулировать принцип экологической (рабочей) надежности: эффективность экосистемы, ее способность к самовосстановлению и саморегуляции (в пределах естественных колебаний) зависит от ее положения в иерархии природных образований, степени взаимодействия ее компонентов и элементов, а также от частных приспособлений организмов, составляющих биоту экосистемы. Разнообразие, сложность и другие морфологические черты экосистемы имеют неодинаковое значение и подчинены степени ее эволюционной и сукцессионной зрелости. Если снижение разнообразия приводит к резкому дисбалансу в «притертости» частей экосистемы, а это случается достаточно часто, то упрощение системы чревато заметным снижением ее надежности.

Сдвигая динамически равновесное состояние природных систем с помощью значительных вложений энергии (путем агротехнических приемов), люди нарушают соотношение экологических компонентов, достигая увеличения полезной продукции (урожая) или состояния среды, благоприятного для жизни человека. Если эти сдвиги «гаснут» в иерархии природных систем и не вызывают термодинамического разлада, положение благоприятно. Однако излишнее вложение энергии и возникающий в результате вещественно-энергетический разлад ведут к снижению природно-ресурсного потенциала вплоть до опустынивания территории, происходящего без компенсанции: вместо цветущих садов возникают пустыни.

Структура экосистем

Экосистемы существуют везде - в воде и на земле, в сухих и влажных районах, в холодных и жарких местностях. Они по-разному выглядят, включают различные виды растений и животных. Однако в «поведении» всех экосистем имеются и общие аспекты, связанные с принципиальным сходством энергетических процессов, протекающих в них. Одним из фундаментальных правил, которым подчиняются все экосистемы, является принцип Ле Шателье-Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.

Самая крупная природная экосистема на Земле - это биосфера. Граница между крупной экосистемой и биосферой столь же условна, как и между многими понятиями в экологии. Различие преимущественно состоит в такой характеристике биосферы, как глобальность и большая условная замкнутость (при термодинамической открытости). Прочие же экосистемы Земли вещественно практически не замкнуты.

Биомы - наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли (пустынные, травянистые, лесные); водные экосистемы - основные экосистемы, существующие в водной сфере (гидросфере).

Любую экосистему прежде всего можно разделить на совокупность организмов и совокупность неживых (абиотических) факторов окружающей природной среды (рис. 2).

В свою очередь экотоп состоит из климата во всех многообразных его проявлениях и геологической среды (почв и грунтов), называемой эдафотопом. Эдафотоп - это то, откуда биоценоз черпает средства для существования и куда выделяет продукты жизнедеятельности.

Структура живой части биогеоценоза определсяется трофоэнергетическими связями и отношениями, в соответствии с которыми выделяют три главных функциональных компонента: комплекс автотрофных организмов-продуцентов, обеспечивающих органическим веществом и, следовательно, энергией остальные организмы (фитоценоз (зеленые растения), а также фото- и хемосинтезирующие бактерии); комплекс гетеротрофных организмов-консументов, живущих за счёт питательных веществ, созданных продуцентами; во-первых, это зооценоз (животные), во-вторых, бесхлорофилльные растения; комплекс организмов-редуцентов, разлагающих органические соединения до минерального состояния (микробиоценоз, а также грибы и прочие организмы, питающиеся мертвым органическим веществом).

Рисунок 2. - Структура экосистемы

Примеры экосистем: участок лесного массива, пруд, гниющий пень, особь, заселенная микробами или гельминтами - являются экосистемами. Понятие экосистемы, таким образом, применимо к любой совокупности живых организмов и их местообитания.

С экосистемных позиций, озеро, лес или какие-нибудь другие элементы природы представляются нам состоящими из двух основных компонентов: автотрофного компонента (автотрофный - значит самопитающийся), способного фиксировать световую энергию и использовать в пищу простые неорганические вещества, и геротрофного компонента (гетеротрофный значит питающийся готовыми органическими веществами), который разлагает, перестраивает и использует сложные вещества, синтезированные автотрофными организмами.

Эти функциональные компоненты расположены в виде налегающих друг на друга слоев, причем наибольшее число автотрофных организмов расположено в верхнем слое, куда поступает световая энергия, тогда как интенсивная гетеротрофная деятельность сосредоточена в местах скопления органического вещества в почве и в иле.

С точки зрения структуры, удобно выделить четыре компонента экосистемы: 1) абиотические вещества - основные элементы и составные части среды; 2) производители - продуценты, автотрофные элементы (в основном зеленые растения); 3) крупные потребители, или макроконсументы, - гетеротрофные организмы (главным образом животные, пожирающие другие организмы или измельчающие органические вещества); 4) разлагатели, или микроконсументы (называемые также сапрофитами или сапробными организмами), гетеротрофные организмы (в основном бактерии и грибы), которые разлагают сложные составные компоненты мертвой протоплазмы, абсорбируют продукты распада и освобождают простые вещества, используемые продуцентами.

Эти экосистемы - наиболее крайние типы, встречающиеся в биосфере; они сильно подчеркивают сходства и отличия всех экосистем. Наземная экосистема (представлена полем, изображенным слева) и открытая водная система (представлена либо озером, либо морем, изображенным справа) населены абсолютно разными организмами, за исключением, может быть, некоторых бактерий, способных жить и в той и в другой среде.

Несмотря на это, в обоих типах экосистем присутствуют и действуют основные экологические компоненты. На суше автотрофы обычно представлены крупными растениями, обладающими корнями; тогда как в глубоких водоемах роль автотрофов берут на себя микроскопические взвешенные в воде растения, носящие название фитопланктона (phyton - растение; plankton - взвешенный). При определенном количестве света и минеральных веществ за определенный период времени мельчайшие растения способны образовывать такое же количество пищи, как и крупные растения. Оба типа продуцентов обеспечивают жизнь одинаковому количеству консументов и разлагателей. В дальнейшем сходства и различия сухопутных и водных экосистем будут разобраны более детально.

Для того чтобы понять взаимоотношение строения и функции, необходимо оценить структуру экосистемы с разных точек зрения. Связь продуцентов и консументов представляет собой один тип структуры, называемой трофической (trophe - питание), и каждый «пищевой» уровень носит название трофического уровня. Количество живого материала на различных трофических уровнях или в популяции носит название «урожая в поле», термин, одинаково применимый как к растениям, так и к животным. «Урожай в поле» может быть выражен или количеством организмов на единицу площади, или количеством биомассы, т. е. массы тела организмов (живой вес, сухой вес, сухой вес без зольного остатка, вес углерода, количество калорий), или в каких-либо других единицах, пригодных для целей сравнения. «Урожай в поле» не только представляет собой потенциальную энергию, но играет большую роль в снижении колебаний физических условий, а также и как обиталище, или жизненное пространство, для организмов. Таким образом, деревья в лесу не только являются запасами энергии, которые обеспечивают пищу или топливо, но изменяют климат и создают убежища для птиц и людей.

Количество безжизненного материала, как-то: фосфора, азота и т. д., имеющееся в данное время, может рассматриваться как состояние стабильности, или стабильное количество. Необходимо различать количества материалов и организмов, имеющихся в наличии в тот или иной момент времени в среднем на протяжении определенного периода, и скорость изменений состояния стабильности и «урожай в поле» за единицу времени. Функции изменения скоростей будут в деталях рассмотрены после знакомства с некоторыми другими аспектами структуры экосистемы.

Количество и распределение как неорганических, так и органических веществ, сосредоточенных либо в биомассе, либо в окружающей среде, должны считаться важной характеристикой любой экосистемы. Об этом в общей форме можно было бы говорить как о биохимической структуре. Так, например, огромный экологический интерес представляет знание количества хлорофилла на единицу земной или водной поверхности. Крайне важно знать также количество органического вещества, растворенного в воде. Помимо этого, необходимо представлять видовую структуру экосистемы. Экологическая структура отражает не только число тех или иных видов, но и видовое разнообразие экосистемы. Последнее проявляется в форме отношений между видами и числом индивидов или биомассой и в форме рассеяния (пространственного распределения) индивидов всех видов, входящих в состав сообщества.

Надо подчеркнуть, что экосистемы могут быть ограничены различными размерами. Объектами исследования может быть небольшой пруд, большое озеро, участок леса и даже маленький аквариум. Экосистемой можно считать любую единицу, если в ней присутствуют ведущие и взаимодействующие компоненты, создающие хотя бы на короткое время функциональную стабильность. Наша биосфера как целое представляет собой серию переходов - градиентов (от гор к долинам, от побережий к глубинам моря и т. д.), которые в сумме создают «хемостат», а именно константность химического состава воздуха и воды в течение долгого периода времени. Не особенно важно, где проводить границы между градиентами, поскольку экосистема в первую очередь представляет собой функциональное единство. Надо, конечно, указать, что в природе часто встречаются разрывы в градиентах, которые обеспечивают удобные и функционально логические границы. Так, например, берег озера может быть понят как правильная граница между двумя резко отличными экосистемами, а именно озером и лесом. Чем больше и чем разнообразнее экосистема, тем она стабильней и относительно независимей от действия прилегающих систем. Так, озеро целиком может рассматриваться как более самостоятельная единица, чем часть озера, однако для целей исследования можно считать экосистемой даже отдельную часть озера.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Впервые термин "Экосистема" был предложен в 1935 году английским экологом А. Тенсли. Экосистема – это основная структурная единица экологии, представляет собой единый природный или природно-антропогенный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные экологические компоненты, объединены причинно-следственными связями, обменом веществ и распределением потока энергии. Экосистемы очень разнообразны. Существует несколько классификаций экосистем.

По происхождению различают следующие типы экосистем.

1. Природные (естественные) экосистемы - это такие экосистемы, в которых биологический круговорот протекает без прямого участия человека. По энергетическому признаку они делятся на два вида:

Экосистемы, полностью зависящие от прямого солнечного излучения, получающие мало энергии, и поэтому малопродуктивны. Однако они крайне важны, так как занимают огромные площади, на которых очищаются большие объемы воздуха, формируются климатические условия и т.д.

Экосистемы, получаемые энергию и от Солнца, и от других естественных источников. Данные экосистемы намного продуктивнее первых.

2. Антропогенные (искусственные) экосистемы - экосистемы, созданные человеком, которые способны существовать только при поддержке человека. Среди данных экосистем выделяют:

Агроэкосистемы (греч. agros - поле) - искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека;

Техноэкосистемы - искусственные экосистемы, возникающие в результате промышленной деятельности человека;

Урбаноэкосистемы (лат. urbanus - городской) - экосистемы, возникающие в результате создания поселений человека. В индустриально-городских экосистемах энергия топлива не дополняет, а заменяет солнечную энергию. Потребность в энергии плотно заселенных городов на 2-3 порядка больше того потока, который поддерживает жизнь в эстественных экосистемах, движимых Солнцем. Существуют и переходные между природными и антропогенным типы экосистем, например, экосистемы естественных пастбищ, используемых человеком для выпаса сельскохозяйственных животных. Все экосистемы взаимосвязаны и взаимозависимы. Существует классификация естественных экосистем в зависимости от природных и климатических условий, основанная на преобладающем типе растительности в крупных регионах-биомах. Биом – совокупность различных групп организмов и среды их обитания в определенной ландшафтно-географической зоне. Биом характеризуется основным типом климата, растительности или особенностями ландшафта. К основным типам природных экосистем и биомов (по Ю. Одуму, 1986) относятся следующие наземные экосистемы:

Вечнозеленый тропический дождевой лес;

Полувечнозеленый тропический лес (выраженный влажный и сухой сезоны);

Пустыня травянистая кустарниковая;

Чапараль – районы с дождливой зимой и засушливым летом;

Тропические злаковники (грасленд) и саванна;

Степь умеренной зоны;

Листопадный лес умеренной зоны;

Бореальные хвойные леса;

Тундра арктическая и альпийская.

В водных местообитаниях, где растительность малозаметна, в основе выделения экосистем находятся гидрологические и физические особенности среды, например "стоячая вода", "текучая вода". Водные экосистемы делятся на пресноводные и морские.

Пресноводные экосистемы:

Ленточные (стоячие воды) – озера, пруды и т.д.;

Лотические (текучие воды) – реки, ручьи и т.д.;

Заболоченные угодья – болота и болотистые леса.

Морские экосистемы:

Открытый океан (пелагическая экосистема);

Воды континентального шельфа (прибрежные воды);

Районы апвеллинга (плодородные районы с продуктивным рыболовством);

Эстуарии (прибрежные бухты, проливы, устья рек и др.);

Глубоководные рифтовые зоны.

Термин "экосистема" был предложен английским экологом А. Тэнсли (1935).

По одному из определений экологическая система (экосистема) - совокупность популяций различных видов растений, животных и микробов, взаимодействующих между собой и окружающей их средой таким образом, что эта совокупность сохраняется неопределенно долгое время. Примеры экологических систем: луг, лес, озеро, океан, капля воды, зачерпнутая из озера, планета Земля в целом и т. д.

Состав экосистемы представлен абиотическими компонентами неживой природы и биотическими компонентами живой природы.

Абиотические компоненты - это:

Неорганические вещества и химические элементы, участвующие в обмене между живой и мертвой материей (вода, кислород, кальций, магний, железо, азот, фосфор и т. д.).

Органические вещества, связывающие абиотическую и биотическую части экосистем (углеводы, жиры, аминокислоты, белки);

Биотические компоненты - это все живые организмы.

Функционирование экосистем обеспечивается взаимодействием трех основных составляющих: сообщества, потока энергии, круговорота веществ.

С точки зрения пространственной структуры в природных системах выделяют два яруса:

Верхний - автотрофный, или «зеленый пояс» Земли, который включает растения или их части, содержащие хлорофилл;

Нижний - гетеротрофный, или коричневый пояс Земли, который включает почвы или донные осадки, где преобладают процессы разложения мертвых органических остатков растений и животных.

Экосистемы существуют везде - в воде и на земле, в сухих и влажных районах, в холодных и жарких местностях. Они по - разному выглядят, включают различные виды растений и животных. Однако в «поведении» всех экосистем имеются и общие аспекты, связанные с принципиальным сходством энергетических процессов, протекающих в них.

Одним из фундаментальных правил, которым подчиняются все экологические системы, является принцип Ле Шателье-Брауна , хорошо известный в физике. При внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.

При изучении экосистем анализируют, прежде всего, поток энергии и круговорот веществ между соответствующими биотопом и биоценозом. Экосистемный подход учитывает общность организации всех сообществ независимо от места обитания. Это подтверждает сходство структуры и функционирования наземной и водной экосистем.

По определению В. Н. Сукачева, биогеоценоз (от греч. bios - жизнь, gео - Земля, ценоз - сообщество) - это совокупность однородных природных элементов (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий) на определенном участке поверхности Земли. Контур биогеоценоза устанавливается по границе растительного сообщества (фитоценоза).

Термины «экологическая система» и «биогеоценоз» не являются синонимами. Экосистема - это любая совокупность организмов и среды их обитания, в том числе, например, горшок с цветком, муравейник, аквариум, болото, пилотируемый космический корабль. У перечисленных систем отсутствует ряд признаков из определения В. Н. Сукачева, и в первую очередь элемент «гео» - Земля. Биоценозы - это только природные образования. Однако биоценоз в полной мере может рассматриваться как экосистема. Таким образом, понятие «экосистема» шире и полностью охватывает понятие «биогеоценоз». «Биогеоценоз» - частный случай «экосистемы».

Самая крупная природная экосистема на Земле - биосфера. Граница между крупной экосистемой и биосферой столь же условна, как и между многими другими понятиями в экологии. Различие преимущественно состоит в такой характеристике биосферы, как глобальность и большая условная замкнутость (при термодинамической открытости). Прочие же экосистемы Земли вещественно практически не замкнуты.

Биомы - наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли (пустынные, травянистые и лесные).

Водные экосистемы - основные экосистемы, существующие в водной сфере (гидросфере). Иногда в литературе встречается близкая, но менее четкая классификация, прежде всего выделяющая влажные тропические леса, саванны, пустыни, степи, леса умеренного пояса, хвойные (тайгу), тундру.

Каждый биом включает в себя ряд меньших по размеру, связанных между собой экосистем. Одни из них могут быть очень крупными, площадью в миллионы квадратных километров, другие - мелкими, например небольшой лес. Важно то, что любую экосистему можно определить как более или менее специфическую группировку растений и животных, взаимодействующих друг с другом и со средой. Так, например, легко выделить множество типов водных экосистем (ручьи, реки, озера, пруды, болота и др.) или подразделить океаны на отдельные экосистемы (коралловые рифы, континентальный шельф, абиссаль и т. д.). Четкие границы между экосистемами встречаются редко, обычно между ними находится переходная зона со своими особенностями.

На границе двух экосистем, например на опушке леса, одновременно встречаются представители лесных и луговых видов. Контрастность среды, а потому большее обилие экологических возможностей порождает «сгущение жизни», называемое правилом краевого эффекта , или правилом экотона (от греч. tonos - связь). Хорошо известно, что на опушках леса жизнь богаче, а в его глубине, как и в середине луга, она менее разнообразна. В природе все существует только совместно, а два рядом расположенных образования могут плавно переходить друг в друга.


Похожая информация:

  1. III. Методика измерений и расчетные формулы. I. Цели работы: определение ускорения свободного падения по периоду колебаний математического и оборотного физического маятников

Все живые организмы обитают на Земле не изолированно друг от друга, а образуя сообщества. В них все взаимосвязано между собой, как живые организмы, так и Такое образование в природе носит название экосистемы, которая живет по своим определенным законам и обладает конкретными признаками и качествами, с которыми мы попытаемся познакомиться.

Понятие экосистемы

Есть такая наука, как экология, которая занимается изучением Но данные отношения могут осуществляться только в рамках определенной экосистемы и происходить не спонтанно и хаотично, а согласно некоторым законам.

Виды экосистем бывают разные, но все они представляют собой совокупность живых организмов, которые взаимодействуют между собой и с окружающей средой путем обмена веществами, энергией и информацией. Именно поэтому, экосистема остается стабильной и устойчивой на протяжении длительного периода времени.

Классификация экосистем

Несмотря на большое разнообразие экосистем, все они являются открытыми, без этого их существование было бы невозможно. Виды экосистем разные, и классификация может быть различной. Если иметь в виду происхождение, то экосистемы бывают:

  1. Природные или естественные. В них все взаимодействие осуществляется без прямого участия человека. Они в свою очередь подразделяются на:
  • Экосистемы, находящиеся в полной зависимости от солнечной энергии.
  • Системы, которые получают энергию как от солнца, так и от других источников.

2. Искусственные экосистемы. Созданы руками человека, и существовать могут только при его участии. Они также подразделяются на:

  • Агроэкосистемы, то есть те, которые связаны с хозяйственной деятельностью человека.
  • Техноэкосистемы появляются в связи с промышленной деятельностью людей.
  • Городские экосистемы.

Другая классификация выделяет следующие виды природных экосистем:

1. Наземные:

  • Тропические леса.
  • Пустыня с травянистой и кустарниковой растительностью.
  • Саванна.
  • Степи.
  • Листопадный лес.
  • Тундра.

2. Пресноводные экосистемы:

  • Стоячие водоемы
  • Текучие воды (реки, ручьи).
  • Болота.

3. Морские экосистемы:

  • Океан.
  • Континентальный шельф.
  • Районы с рыболовством.
  • Устья рек, бухты.
  • Глубоководные рифтовые зоны.

Независимо от классификации можно видеть разнообразие видов экосистемы, которое характеризуется своим набором жизненных форм и численным составом.

Отличительные признаки экосистемы

Понятие экосистема можно отнести как к природным образованиям, так и к искусственно созданным человеком. Если говорить про естественные, то для них характерны следующие признаки:

  • В любой экосистеме обязательные элементы - это живые организмы и абиотические факторы среды.
  • В любой экосистеме существует замкнутый цикл от производства органических веществ до их разложения на неорганические компоненты.
  • Взаимодействие видов в экосистемах обеспечивает устойчивость и саморегуляцию.

Весь окружающий мир представлен различными экосистемами, в основе которых лежит живое вещество с определенной структурой.

Биотическая структура экосистемы

Даже если экосистемы отличаются между собой видовым разнообразием, обилием живых организмов, их жизненными формами, но биотическая структура в любой из них все равно одинакова.

Любые виды экосистем включают в себя одни и те же компоненты, без их наличия функционирование системы просто невозможно.

  1. Продуценты.
  2. Консументы второго порядка.
  3. Редуценты.

К первой группе организмов относятся все растения, которые способны к процессу фотосинтеза. Они продуцируют органические вещества. К этой же группе относятся и хемотрофы, которые образуют органические соединения. Но только для этого используют не солнечную энергию, а энергию химических соединений.

К консументам относятся все организмы, которым для построения своего тела необходимо поступление органических веществ извне. Сюда можно отнести всех растительноядных организмов, хищников и всеядных животных.

Редуценты, к которым можно отнести бактерии, грибы, превращают остатки растений и животных в неорганические соединения, пригодные для использования живыми организмами.

Функционирование экосистем

Самая большая биологическая система - это биосфера, она, в свою очередь состоит из отдельных компонентов. Можно составить такую цепочку: вид-популяция - экосистема. Самая маленькая единица, входящая в экосистемы, - это вид. В каждом биогеоценозе количество их может варьировать от нескольких десятков до сотен и тысяч.

Независимо от числа особей и отдельных видов в любой экосистеме происходит постоянный обмен веществом, энергией не только между собой, но и с окружающей средой.

Если говорить об обмене энергией, то здесь вполне можно применить законы физики. Первый закон термодинамики гласит, что энергия не исчезает бесследно. Она только превращается из одного вида в другой. Согласно второму закону, в замкнутой системе энергия может только увеличиваться.

Если физические законы применить к экосистемам, то можно прийти к заключению, что поддерживают свою жизнедеятельность они благодаря наличию солнечной энергии, которую организмы способны не только улавливать, но и преобразовывать, использовать, а потом отдавать в окружающую среду.

Энергия передается от одного трофического уровня другому, во время передачи происходит превращение одного вида энергии в другой. Часть ее, конечно же, теряется в виде тепла.

Какие бы ни существовали виды природных экосистем, но такие законы действуют абсолютно в каждой.

Структура экосистемы

Если рассмотреть любую экосистему, то в ней обязательно можно видеть, что различные категории, например продуценты, консументы и редуценты, всегда представлены целым набором видов. Природой предусмотрено, если вдруг что-то случится с одним из видов, то от этого экосистема не погибнет, его всегда с успехом может заменить другой. Этим и объясняется устойчивость природных экосистем.

Большое разнообразие видов в экосистеме, разнообразие обеспечивают устойчивость всех процессов, которые осуществляются внутри сообщества.

Кроме этого, в любой системе действуют свои законы, которым подчиняются все живые организмы. Исходя из этого, можно выделить несколько структур внутри биогеоценоза:


Любая структура в обязательном порядке присутствует в любой экосистеме, но она может существенно отличаться. Например, если сравнить биогеоценоз пустыни и тропического леса, разница видна невооруженным глазом.

Искусственные экосистемы

Такие системы создаются руками человека. Несмотря на то что в них, как и в природных, в обязательном порядке присутствуют все компоненты биотической структуры, все же имеются существенные отличия. Среди них можно назвать следующие:

  1. Агроценозы отличаются бедным видовым составом. Там произрастают только те растения, которые выращивает человек. Но природа берет свое, и всегда, например, на поле пшеницы можно видеть васильки, ромашки, различные членистоногие поселяются. В некоторых системах даже птицы успевают свить на земле гнездо и вывести птенцов.
  2. Если человек не будет ухаживать за данной экосистемой, то культурные растения не выдержат конкуренции со своими дикими сородичами.
  3. Агроценозы существуют еще за счет дополнительной энергии, которую привносит человек, например, внося удобрения.
  4. Так как выросшая биомасса растений изымается вместе с урожаем, то почва обедняется питательными веществами. Поэтому для дальнейшего существования опять необходимо вмешательство человека, которому придется вносить удобрения, чтобы вырастить следующий урожай.

Можно сделать вывод, что искусственные экосистемы не принадлежат к устойчивым и саморегулирующимся системам. Если человек перестанет за ними ухаживать, они не выживут. Постепенно дикорастущие виды вытеснят культурные растения, и агроценоз будет разрушен.

Например, искусственная экосистема из трех видов организмов легко может быть создана в домашних условиях. Если поставить аквариум, налить в него воды, поместить несколько веточек элодеи и поселить две рыбки, вот вам искусственная система готова. Даже такая простая не сможет существовать без вмешательства человека.

Значение экосистем в природе

Если говорить глобально, то все живые организмы распределены по экосистемам, поэтому их важность сложно недооценить.

  1. Все экосистемы связаны между собой круговоротом веществ, которые могут мигрировать из одной системы в другую.
  2. Благодаря наличию экосистем в природе сохраняется биологическое разнообразие.
  3. Все ресурсы, которые мы черпаем из природы, дают нам именно экосистемы: чистую воду, воздух,

Любую экосистему очень легко разрушить, тем более учитывая возможности человека.

Экосистемы и человек

С момента появления человека его влияние на природу увеличивалось с каждым годом. Развиваясь, человек возомнил себя царем природы, стал не задумываясь уничтожать растения и животных, разрушать природные экосистемы, тем самым стал рубить сук, на котором сидит сам.

Вмешиваясь в вековые экосистемы и нарушая законы существования организмов, человек привел к тому, что уже все экологи мира кричат в один голос, что наступил мировой Большинство ученых уверены, что природные катаклизмы, которые в последнее время стали происходить все чаще, являются ответом природы на бездумное вмешательство человека в ее законы. Пора остановиться и задуматься, что любые виды экосистем формировались веками, задолго до появления человека, и прекрасно существовали без него. А вот человечество сможет прожить без природы? Ответ напрашивается сам собой.