Вокруг нас очень много источников звука: музыкальные и технические инструменты, голосовые связки человека, морские волны, ветер и другие. Звук или, иначе, звуковые волны – это механические колебания среды с частотами 16 Гц – 20 кГц (см. § 11-а).

Рассмотрим опыт. Поместив будильник на подушечке под колокол воздушного насоса, мы заметим: тиканье станет тише, но всё равно будет слышно. Откачав из-под колокола воздух, мы перестанем слышать звук вообще. Этот опыт подтверждает, что звук распространяется по воздуху и не распространяется в вакууме.

Скорость звука в воздухе сравнительно велика: лежит в интервале от 300 м/с при –50°С до 360 м/с при +50°С. Это в 1,5 раза больше, чем скорость пассажирских самолётов. В жидкостях звук распространяется заметно быстрее, а в твёрдых телах – ещё быстрее. В стальном рельсе, например, скорость звука » 5000 м/с.

Взгляните на графики колебаний давления воздуха у рта человека, поющего звуки «А» и «О». Как видите, колебания являются сложными, состоящими из нескольких колебаний, накладывающихся друг на друга. При этом чётко видны основные колебания, частота которых почти не зависит от произносимого звука. Для мужского голоса это приблизительно 200 Гц, для женского – 300 Гц.

l max = 360 м/с: 200 Гц » 2 м, l min = 300 м/с: 300 Гц » 1 м.

Итак, длина звуковой волны голоса зависит от температуры воздуха и основной частоты голоса. Вспомнив наши знания о дифракции, мы поймём, почему в лесу слышно голоса людей, даже если их загораживают деревья: звуки с длинами волн 1–2 м легко огибают стволы деревьев, диаметр которых меньше метра.

Проделаем опыт, подтверждающий, что источниками звука действительно являются колеблющиеся тела.

Возьмём прибор камертон – металлическую рогатку, укреплённую на ящичке без передней стенки для лучшего излучения звуковых волн. Если ударить молоточком по концам рогатки камертона, он будет издавать «чистый» звук, называемый музыкальным тоном (например, ноту «ля» первой октавы с частотой 440 Гц). Придвинем звучащий камертон к лёгкому шарику на нити, и он тотчас же отскочит в сторону. Так происходит именно из-за частых колебаний концов рогатки камертона.

Причины, от которых зависит частота колебаний тела, – его упругость и размер. Чем больше размер тела, тем меньше частота. Поэтому, например, слоны с большими голосовыми связками испускают звуки низкой частоты (бас), а мыши, размер голосовых связок которых значительно меньше, – высокочастотные звуки (писк).

От упругости и размеров зависит не только как будет звучать тело, но и как оно будет улавливать звуки – откликаться на них. Явление резкого увеличения амплитуды колебаний при совпадении частоты внешнего воздействия с собственной частотой тела называется резонансом (лат. «резоно» – откликаюсь). Проделаем опыт по наблюдению резонанса.

Расположим два одинаковых камертона рядом, повернув их друг к другу теми сторонами ящичков, где нет стенок. Ударим левый камертон молоточком. Через секунду заглушим его рукой. Мы услышим, что звучит второй камертон, который мы не ударяли. Говорят, что правый камертон резонирует, то есть улавливает энергию звуковых волн от левого камертона, в результате чего увеличивает амплитуду собственных колебаний.

Прежде чем понять, какие источники звука бывают, задумайтесь, что такое звук? Мы знаем, что свет это излучение. Отражаясь от предметов, это излучение попадает к нам в глаза, и мы можем его видеть. Вкус и запах это маленькие частички тел, которые воспринимают наши соответствующие рецепторы. А звук это что за зверь?

Звуки передаются по воздуху

Вы наверняка видели, как играют на гитаре. Возможно, вы и сами умеете это делать. Важно другое звук в гитаре издают струны, если их дернуть. Все верно. А вот если бы вы могли поместить гитару в вакуум и дернуть струны, то вы бы очень удивились никакого звука гитара не издала бы.

Такие опыты проводились с самыми различными телами, и всегда результат был один никакого звука в безвоздушном пространстве не было слышно. Отсюда следует логичный вывод звук передается по воздуху. Следовательно, звук это нечто, происходящее с частицами веществ воздуха и издающих звук тел.

Источники звука - колеблющиеся тела

Далее. В результате самых разнообразных многочисленных экспериментов удалось установить, что звук возникает вследствие колебания тел. Источниками звука являются тела, которые колеблются. Эти колебания передаются молекулами воздуха и наше ухо, воспринимая эти колебания, интерпретирует их в понятные нам ощущения звука.

Проверить это не сложно. Возьмите стеклянный или хрустальный бокал и поставьте его на стол. Легонько стукните по нему металлической ложечкой. Вы услышите длинный тонкий звук. Теперь дотроньтесь рукой до бокала и стукните еще раз. Звук изменится и станет намного короче.

А теперь пусть несколько человек обхватят руками бокал максимально полностью, вместе с ножкой, стараясь не оставить ни одного свободного участка, кроме совсем маленького места для удара ложечкой. Вновь ударьте по бокалу. Вы почти не услышите никакого звука, а тот, что будет - получится слабым и очень коротким. О чем это говорит?

В первом случае после удара бокал свободно колебался, его колебания передавались по воздуху и достигали наших ушей. Во втором случае большая часть колебаний поглощалась нашей рукой, и звук стал гораздо короче, так как уменьшились колебания тела. В третьем случае практически все колебания тела моментально поглотились руками всех участников и тело почти не колебалось, а следовательно, звука почти не издавало.

То же самое касается всех иных экспериментов, которые вы можете придумать и провести. Колебания тел, передаваясь молекулам воздуха, будут восприниматься нашими ушами, и интерпретироваться мозгом.

Звуковые колебания разной частоты

Итак, звук это колебания. Источники звука передают звуковые колебания по воздуху к нам. Почему же тогда мы слышим далеко не все колебания всех предметов? А потому что колебания бывают разной частоты.

Воспринимаемый человеческим ухом звук это звуковые колебания частотой примерно от 16 Гц до 20 кГц. Дети слышат звуки более высоких частот, чем взрослые, а диапазоны восприятия различных живых существ вообще различаются очень сильно.

Уши очень тонкий и нежный инструмент, подаренный нам природой, поэтому следует беречь его, так как замены и аналога в человеческом теле не существует.

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам наслаждение. Мы с удовольствием слушаем человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах.

Причина звука - вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой
от 16 до 20000 раз в секунду. Вибрирующее тело может быть
твердым , например, струна
или земная кора,
газообразным , например, струя воздуха в духовых музыкальных инструментах
или
жидким , например, волны на воде.

Громкость

Громкость зависит от амплитуды колебаний в звуковой волне. За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). На практике громкость измеряют в децибелах (дБ). 1 дБ = 0,1Б.

10 дБ – шепот;

20–30 дБ – норма шума в жилых помещениях;
50 дБ – разговор средней громкости;
80 д Б – шум работающего двигателя грузового автомобиля;
130 дБ – порог болевого ощущения

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Высокие звуки представлены высокочастотными волнами – например, птичье пение.

Низкие звуки – это низкочастотные волны, например, звук двигателя большого грузовика.

Звуковые волны

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

КАМЕРТОН

- это U-образная металлическая пластина , концы которой могут колебаться после удара по ней.

Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии.
Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука.
Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора.
Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Э Х О

Громкий звук, отражаясь от преград, возвращается к источнику звука спустя несколько мгновений, и мы слышим эхо.

Умножив скорость звука на время, прошедшее от его возникновения до возвращения, можно определить удвоенное расстояние от источника звука до преграды.
Такой способ определения расстояния до предметов используется в
эхолокации.

Некоторые животные, например летучие мыши,
также используют явление отражения звука, применяя метод эхолокации

На свойстве отражения звука основана эхолокация.

Звук - бегущая механическая вол на и передает энергию.
Однако мощность одновременного разговора всех людей на земном шаре едва ли больше мощности одного автомобиля "Москвич"!

Ультразвук.

    Колебания с частотами, превосходящими 20 000 Гц, называют ультразвуком. Ультразвук широко применяется в науке и технике.

    Жидкость вскипает при прохождении ультразвуковой волны (кавитация). При этом возникает гидравлический удар. Ультразвуки могут отрывать кусочки от поверхности металла и производить дробление твердых тел. С помощью ультразвука можно смешать не смешивающиеся жидкости. Так готовятся эмульсии на масле. При действии ультразвука происходит омыление жиров. На этом принципе устроены стиральные устройства.

    Широко используется ультразвук в гидроакустике. Ультразвуки большой частоты поглощаются водой очень слабо и могут распространяться на десятки километров. Если они встречают на своем пути дно, айсберг или другое твердое тело, они отражаются и дают эхо большой мощности. На этом принципе устроен ультразвуковой эхолот.

В металле ультразвук распространяется практически без поглощения. Применяя метод ультразвуковой локации, можно обнаружить мельчайшие дефекты внутри детали большой толщины.

    Дробящее действие ультразвука применяют для изготовления ультразвуковых паяльников.

Ультразвуковые волны , посланные с корабля, отражаются от затонувшего предмета. Компьютер засекает время появления эха и определяет местоположение предмета.

    Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности).

Инфразвук и его влияние на человека.

Колебания с частотами ниже 16 Гц называются инфразвуком.

В природе инфразвук возникает из-за вихревого движения воздуха в атмосфере или в результате медленных вибраций различных тел. Для инфразвука характерно слабое поглощение. Поэтому он распространяется на большие расстояния. Организм человека болезненно реагирует на инфразвуковые колебания. При внешних воздействиях, вызванных механической вибрацией или звуковой волной на частотах 4-8 Гц, человек ощущает перемещение внутренних органов, на частоте 12 Гц – приступ морской болезни.

    Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).

Источники звука.

Звуковые колебания

Конспект урока.

1.Организационный момент

Здравствуйте, ребята! Наш урок имеет широкое практическое применение в повседневной практике. Поэтому ваши ответы будут зависеть от наблюдательности в жизни и от умения анализировать свои наблюдения.

2. Повторение опорных знаний.

На экране проектора высвечиваются слайды №1, 2, 3, 4, 5 (приложение 1).

Ребята, перед вами кроссворд, разгадав который вы узнаете ключевое слово урока.

1-й фрагмент: назовите физическое явление

2-й фрагмент: назовите физический процесс

3-й фрагмент: назовите физическую величину

4-й фрагмент: назовите физический прибор

Р

З

Н

В

У

К

Обратите внимание на выделенное слово. Это слово «ЗВУК», оно является ключевым словом урока. Наш урок посвящён звуку и звуковым колебаниям. Итак, тема урока «Источники звука. Звуковые колебания». На уроке вы узнаете, что является источником звука, что такое звуковые колебания их возникновение и некоторые практические применения в вашей жизни.

3. Объяснение нового материала.

Проведём опыт. Цель опыта: выяснить причины возникновения звука.

Опыт с металлической линейкой (приложение 2).

Что вы наблюдали? Какой можно сделать вывод?

Вывод: колеблющееся тело создаёт звук.

Проведём следующий опыт. Цель опыта: выяснить, всегда ли звук создаётся колеблющимся телом.

Прибор, который вы видите перед собой, называется камертон.

Опыт с камертоном и теннисным шариком, повешенным на нити (приложение 3).

Вы слышите звук, который издаёт камертон, но колебаний камертона не заметно. Чтобы убедиться в том, что камертон колеблется, осторожно пододвинем его к тенистому шарики подвешенному на нити и увидим, что колебания камертона передались шарику, который пришёл в периодическое движение.

Вывод: звук порождается любым колеблющимся телом.

Мы живём в океане звуков. Звук создаётся источниками звука. Существуют как искусственные, так и естественные источники звука. К естественным источникам звука относятся голосовые связки (приложение 1 – слайд №6).Воздух, которым мы дышим, выходит из лёгких через дыхательные пути в гортань. В гортани находятся голосовые связки. Под давлением выдыхаемого воздуха они начинают колебаться. Роль резонатора играют полости рта и носа, а также грудь. Для членораздельной речи кроме голосовых связок необходимы также язык, губы, щёки, мягкое нёбо и надгортанник.

К естественным источникам звука относятся также жужжание комара, мухи, пчелы (колеблются крылья ).

Вопрос: за счёт чего создаётся звук.

(Воздух в шарике находится под давлением в сжатом состоянии. Затем, резко расширяется и создаёт звуковую волну.)

Итак, звук создаёт не только колеблющееся, но и резко расширяющееся тело. Очевидно, что во всех случаях возникновения звука происходит перемещение слоёв воздуха, т. е. возникает звуковая волна.

Звуковая волна невидимая, её только можно услышать, а также зарегистрировать физическими приборами. Для регистрации и исследования свойств звуковой волны применим компьютер, который в настоящее время широко применяется учёными-физиками для исследований. На компьютере установлена специальная исследовательская программа, а также подключен микрофон, который улавливает звуковые колебания (приложение 4). Посмотрите на экран. На экране вы видите графическое представление звукового колебания. Что представляет собой данный график? (синусоиду)

Проведем опыт с камертоном с пером. Резиновым молоточком ударяем по камертону. Учащиеся видят колебания вилки камертона, но звука не слышат.

Вопрос: Почему колебания есть, а звук вы не слышите?

Оказывается, ребята, человеческое ухо воспринимает звуковые диапазоны в пределах от 16 Гц доГц, это слышимый звук.

Послушайте их через компьютер и уловите изменение частот диапазона (приложение 5). Обратите внимание на то, как меняется вид синусоиды при изменении частоты звуковых колебаний (период колебаний уменьшается, а следовательно частота увеличивается).

Есть неслышимые звуки для человеческого уха. Это инфразвук (диапазон колебаний меньше 16 Гц) и ультразвук (диапазон большеГц). Схему частотных диапазонов вы видите на доске, зарисуйте её в тетрадь (приложение 5). Исследуя инфра и ультразвуки учёные открыли много интересных особенностей этих звуковых волн. Об этих интересных фактах нам расскажут ваши одноклассники (приложение 6).

4. Закрепление изученного материала.

Для закрепления изученного материала на уроке предлагаю сыграть в игру ВЕРНО-НЕВЕРНО. Я зачитываю ситуацию, а вы поднимаете табличку с надписью, ВЕРНО или НЕВЕРНО, и поясняете свой ответ.

Вопросы. 1. Верно ли, что источником звука является любое колеблющееся тело? (верно).

2. Верно ли, что в зале, заполненном публикой, музыка звучит громче, чем в пустом? (неверно, т. к. пустой зал действует как резонатор колебаний).

3. Верно ли, что комар быстрее машет крыльями, чем шмель? (верно, т. к. звук, производимый комаром выше, следовательно, выше и частота колебаний крыльев).

4. Верно ли, что колебания звучащего камертона быстрее затухают, если его ножку поставить на стол? (верно, т. к. колебания камертона передаются столу).

5. Верно ли, что летучие мыши видят с помощью звука? (верно, т. к. летучие мыши излучают ультразвук, а затем слушают отражённый сигнал).

6. Верно ли, что некоторые животные «предсказывают» землетрясение с помощью инфразвука? (верно, например, слоны чувствуют землетрясение за несколько часов и при этом крайне возбуждены).

7.Верно ли, что инфразвук вызывает психические расстройства у людей? (верно, в Марселе (Франция) рядом с научным центром была построена небольшая фабрика. Вскоре после ее пуска в одной из научных лабораторий обнаружили странные явления. Пробыв в ее помещении пару часов, исследователь становился абсолютно тупым: он с трудом решал даже несложную задачу).

И в заключение предлагаю вам из разрезанных букв, путём перестановки получить ключевые слова урока.

КВЗУ – ЗВУК

РАМТНОКЕ – КАМЕРТОН

ТРЬАКЗУВЛУ – УЛЬТРАЗВУК

ФРАКВЗУНИ - ИНФРАЗВУК

ОКЛАБЕИНЯ – КОЛЕБАНИЯ

5. Подведение итогов урока и домашнее задание.

Итоги урока. На уроке мы выяснили, что:

Что любое колеблющееся тело создаёт звук;

Звук распространяется в воздухе в виде звуковых волн;

Звуки бывают слышимые и неслышимые;

Ультразвук – это неслышимый звук, частота колебаний которого выше 20кГц;

Инфразвук – это неслышимый звук с частотой колебаний ниже 16Гц;

Ультразвук широко применяется в науке и технике.

Домашнее задание:

1. §34, упр. 29 (Пёрышкин 9 кл.)

2. Продолжить рассуждение:

Я слышу звук: а)мухи; б)упавшего предмета; в)грозы, потому что ….

Я не слышу звук: а)от взлезающего голубя; б)от парящего в небе орла, потому что…

Раздел физики, занимающийся звуковыми колебаниями, называется акустикой.

Человеческое ухо устроено так, что оно воспринимает колебания частотой от 20 Гц до 20 кГц как звук. Низкие частоты (звук от большого барабана или органной трубы) воспринимаются ухом как басовые ноты. Свист или писк комара соответствуют высоким частотам. Колебания частотой ниже 20 Гц называются инфразвуком , а частотой свыше 20 кГц - ультразвуком. Такие колебания человек не слышит, но есть животные, которые слышат инфразвуки, исходящие от земной коры перед землетрясением. Услышав их, животные покидают опасную местность.

В музыке акустические частоты соответствуют нотам. Нота «ля» основной октавы (ключ С) соответствует частоте 440 Гц. Нота «ля» следующей октавы соответствует частоте 880 Гц. И так все остальные октавы отличаются по частоте ровно в два раза. Внутри каждой октавы различают 6 тонов или 12 полутонов. Каждый тон имеет частоту в yf2 ~ 1,12 отличающуюся от частоты предыдущего тона, каждый полутон отличается от предыдущего в "$2 . Мы видим, что каждая следующая частота отличается от предыдущей не на сколько-то Гц, а в одинаковое число раз. Такая шкала называется логарифмической, так как равное расстояние между тонами будет именно на логарифмической шкале, где откладывается не сама величина, а ее логарифм.

Если звук соответствует одной частоте v (или со = 2tcv), то его называют гармоническим, или монохроматическим. Чисто гармонические звуки встречаются редко. Почти всегда звук содержит набор частот, т. е. его спектр (см. раздел 8 настоящей главы) сложен. Музыкальные колебания всегда содержат основной тон ссо = 2я/Т, где Т - период, и набор обертонов 2(Оо, Зсо 0 , 4соо и т. д. Набор обертонов с указанием их интенсивностей в музыке называется тембром. У разных музыкальных инструментов, у разных певцов, берущих одну и ту же ноту, тембр разный. Это придает им разную окраску.

Возможна примесь и некратных частот. В классической европейской музыке это считается неблагозвучным. Однако в современной музыке это используется. Даже используется медленное движение каких-либо частот в сторону увеличения или уменьшения (гавайская гитара).

В немузыкальных звуках возможны любые комбинации частот в спектре и их изменение во времени. Спектр таких звуков может быть сплошным (см. раздел 8). Если интенсивности для всех частот приблизительно одинаковы, то такой звук называют «белый шум» (термин взят из оптики, где белый цвет - совокупность всех частот).

Очень сложны звуки человеческой речи. Они имеют сложный спектр, который быстро меняется со временем при произнесении одного звука, слова и всей фразы. Это придает звукам речи различные интонации и акценты. В результате можно по голосу отличить одного человека от другого, даже если они произносят одни и те же слова.