.
O

//
Группа атомов -С называется карбоксильной группой или карбоксилом.
\

OH
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOН.

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты.

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота. В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат п -связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например в молекулах акриловой (пропеновой) СН2=СН-СООН или олеиновой СН3-(СН2)7-СН= СН-(СН2)7-СООН и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо.

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, мы уже рассматривали. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов, окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия (табл. 6).

После первого знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот будет отражаться общей формулой С n Н 2n O2, или С n Н 2n +1 CООН, или RСООН.

Физические свойства предельных одноосновных карбоновых кислот

Низшие кислоты, т. е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоно-вых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна 101 °С, уксусной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молекулярную массу (46), при обычных условиях является жидкостью с температурой кипения 100,8 °С. В то же время бутан (МR(С4Н10) = 58) в тех же условиях газообразен и имеет температуру кипения -0,5 °С. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями. Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов - карбоксил (подумайте, чем вызвана полярность этой функциональной группы) и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи.

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Зная состав и строение молекул карбоновых кислот, нам будет нетрудно понять и объяснить химические свойства этих веществ.

Химические свойства

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильно полярную связь между атомами водорода и кислорода . Эти свойства вам хорошо известны. Рассмотрим их еще раз на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка. Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды.

Равновесие диссоциации карбоновых кислот смещено влево, подавляющее большинство их - слабые электролиты. Тем не менее кислый вкус, например, муравьиной и уксусной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты:

2СН3-СООН + Fe -> (CHgCOO)2Fe + Н2

3. Взаимодействие с основными оксидами с образованием соли и воды:

2R-СООН + СаО -> (R-СОО)2Са + Н20

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

R-СООН + NaOH -> R-COONa + Н20 3R-СООН + Са(ОН)2 -> (R-СОО)2Са + 2Н20

5. Взаимодействие с солями более слабых кислот, с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров - уже известная вам реакция эте-рификации (одна из наиболее важных реакций, характерных для карбоновых кислот). Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотни-мающих средств и удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт. Очевидно, что реагировать с карбоновыми кислотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Dсе карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты; например, реакция присоединения водорода - гидрирование. При гидрировании олеиновой кислоты образуется предельная стеариновая кислота.

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду.

8. Реакции замещения (с галогенами) - в нее способны вступать предельные карбоновые кислоты; например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:


При галогенировании карбоновых кислот, содержащих более одного атома углерода в углеводородном остатке, возможно образование продуктов с различным положением галогена в молекуле. При протекании реакции по свободнорадикальному механизму могут замещаться любые атомы водорода в углеводородном остатке. Если же реакцию проводить в присутствии небольших количеств красного фосфора , то она идет селективно - водород замещается лишь в а -положении (у ближайшего к функциональной группе атома углерода) в молекуле кислоты. Причины такой селективности вы узнаете при изучении химии в высшем учебном заведении.

Карбоновые кислоты образуют различные функциональные производные при замещении гидроксильной группы. При гидролизе этих производных из них вновь образуется карбоновая кислота.

Хлорангидрид карбоновой кислоты можно получить действием на кислоту хлорида фосфора(ІІІ) или тионилхлорида (SОСl 2). Ангидриды карбоновых кислот получают взаимодействием хлор-ангидридов с солями карбоновых кислот. Сложные эфиры образуются в результате этерификации карбоновых кислот спиртами. Этерификация катализируется неорганическими кислотами.

Эту реакцию инициирует протонирование карбоксильной группы - взаимодействие катиона водорода (протона) с неподеленной электронной парой атома кислорода. Протонирование карбоксильной группы влечет за собой увеличение положительного заряда на атоме углерода в ней:


Способы получения

Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов.

Ароматические карбоновые кислоты образуются при окислении гомологов бензола .

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катарилизируемые кислотой, обратимы. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль. При гидролизе нитрилов сначала образуются амиды, которые затем превращаются в кислоты. Карбоновые кислоты образуются при взаимодействии магний-органических соединений с оксидом углерода(IV).

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота НСООН - жидкость с резким запахом и температурой кипения 100,8 °С, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

Уксусная (этановая) кислота СН3СООН - бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5%-ный раствор) и уксусной эссенции (70-80%-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, - гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ей. Она продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты. В отличие от низших кислот эти вещества твердые, плохо растворимые в воде.

Однако их соли - стеараты и пальмитаты - хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота С17Н33СООН, или (СН2)7СООН. Это маслоподоб-ная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота НООС-СООН, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

1. Непредельная элаидиновая кислота С17Н33СООН является транс-изомером олеиновой кислоты. Составьте структурную формулу этого вещества.

2. Составьте уравнение реакции гидрирования олеиновой кислоты. Назовите продукт этой реакции.

3. Составьте уравнение реакции горения стеариновой кислоты. Какой объем кислорода и воздуха (н. у.) потребуется для сжигания 568 г стеариновой кислоты?

4. Смесь твердых жирных кислот - пальмитиновой и стеариновой - называют стеарином (именно из него изготавливают стеариновые свечи). Какой объем воздуха (н. у.) потребуется для сжигания двухсотграммовой стеариновой свечи, если стеарин содержит равные массы пальмитиновой и стеариновой кислот? Какой объем углекислого газа (н. у.) и масса воды образуются при этом?

5. Решите предыдущую задачу при условии, что свеча содержит равные количества (одинаковое число молей) стеариновой и пальмитиновой кислот.

6. Для удаления пятен ржавчины их обрабатывают раствором уксусной кислоты. Составьте молекулярные и ионные уравнения происходящих при этом реакций, учитывая, что ржавчина содержит оксид и гидроксид железа(III) - Fе2O3 и Fе(ОН)3. Почему такие пятна не удаляются водой? Почему они исчезают при обработке раствором кислоты?

7. Добавляемую в бездрожжевое тесто пищевую (питьевую) соду МаНС03 предварительно «гасят» уксусной кислотой. Проделайте дома эту реакцию и составьте ее уравнение, зная, что угольная кислота слабее уксусной. Объясните образование пены.

8. Зная, что хлор более электроотрицателен, чем углерод , расположите следующие кислоты: уксусную, пропионо-вую, хлоруксусную, дихлоруксусную и трихлоруксусную кислоты в порядке усиления кислотных свойств. Обоснуйте свой результат.

9. Чем можно объяснить, что муравьиная кислота вступает в реакцию «серебряного зеркала»? Составьте уравнение этой реакции. Какой газ может выделяться при этом?

10. При взаимодействии 3 г предельной одноосновной карбо-новой кислоты с избытком магния выделилось 560 мл (н. у.) водорода. Определите формулу кислоты.

11. Приведите уравнения реакции, с помощью которых можно описать химические свойства уксусной кислоты. Назовите продукты этих реакций.

12. Предложите несложный лабораторный способ, с помощью которого можно распознать пропановую и акриловую кислоты.

13. Составьте уравнение реакции получения метилформиата - сложного эфира метанола и муравьиной кислоты. В каких условиях следует проводить эту реакцию?

14. Составьте структурные формулы веществ, имеющих состав С3Н602. К каким классам веществ их можно отнести? Приведите уравнения реакций, характерных для каждого из них.

15. Вещество А - изомер уксусной кислоты - не растворяется в воде, однако может подвергаться гидролизу. Какова структурная формула вещества А? Назовите продукты его гидролиза.

16. Составьте структурные формулы следующих веществ:

а) метилацетат;
б) щавелевая кислота;
в) муравьиная кислота;
г) дихлоруксусная кислота;
д) ацетат магния;
е) этилацетат;
ж) этилформиат;
з) акриловая кислота.

17*. Образец предельной одноосновной органической кислоты массой 3,7 г нейтрализовали водным раствором гидрокарбоната натрия. При пропускании выделившегося газа через известковую воду было получено 5,0 г осадка. Какая кислота была взята и каков объем выделившегося газа?

Карбоновые кислоты в природе

Карбоновые кислоты очень часто встречается в природе. Они содержится в фруктах и растениях. Они присутствуют в хвое, поте, моче и соке крапивы. Вы знаете, оказывается, что основная масса кислот образуют сложные эфиры, которые обладают запахами. Так запах молочной кислоты, которая содержится в поте человека, привлекает комаров, они ее чувствуют на довольно-таки значительном расстоянии. Поэтому, сколько бы вы не пытались отогнать назойливого комара, он все равно хорошо чувствует свою жертву. Кроме человеческого пота, молочная кислота содержится в соленых огурцах и квашеной капусте.

А самки обезьян, чтобы привлечь к себе самца, выделяет уксусную и пропионовую кислоту. Чувствительный, собачий нос способен услышать запах масляной кислоты, которая имеет концентрацию 10–18 г/см3.

Многие виды растений способны выделять выделяют уксусную и масляную кислоту. А некоторые сорные растения этим пользуются и выделяя вещества, устраняют своих конкурентов, подавляя их рост, а иногда и вызывая их гибель.

Кислотой пользовались и индейцы. Чтобы уничтожить врага, они смачивали стрелы смертельным ядом, который оказался производным от уксусной кислоты.

И тут возникает закономерный вопрос, представляют ли кислоты опасность для здоровья человека? Ведь широко распространенная в природе щавелевая кислота, которая содержится в щавеле, апельсинах, смородине и малине, почему-то не нашла применения в пищевой промышленности. Оказывается, щавелевая кислота в двести раз сильнее уксусной кислоты, и способна даже разъедать посуду, а ее соли, накапливаясь в организме человека, образовывать камни.

Кислоты нашли широкое применение во всех сферах человеческой жизни. Их применяют в медицине, косметологии, пищевой промышленности, сельском хозяйстве и используют для бытовых нужд.

В медицинских целях используются такие органические кислоты, как молочная, винная, аскорбиновая. Наверное, каждый из вас употреблял для укрепления организма витамин С – это как раз и есть аскорбиновая кислота. Она не только помогает укрепить иммунитет, но и обладает способностью выводить из организма канцерогены и токсины. Молочную кислоту используют для прижигания, так как она обладает высокой гигроскопичностью. А вот винная кислота действует, как легкое слабительное, как противоядие при отравлениях щелочами и как компонент, необходимый для приготовления плазмы при переливании крови.

А вот поклонникам косметических процедур, следует знать, что содержащиеся в цитрусовых фруктах, фруктовые кислоты, благоприятно влияют на кожу, так, как проникая вглубь, они способны ускорять процесс обновления кожи. Кроме этого, запах цитрусовых имеет тонизирующее влияние на нервную систему.

Замечали ли вы, что такие ягоды, как клюква и брусника долго хранятся и остаются свежими. А знаете почему? Оказывается, в них содержится бензойная кислота, которая является прекрасным консервантом.

А вот в сельском хозяйстве широкое применение нашла янтарная кислота, так как с ее помощью можно повысить урожайность культурных растений. Также она способна стимулировать рост растений и ускорять их развитие.










































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • Воспитания:
    • воспитывать аккуратность в ведении записей в тетрадях;
    • приучать к поддержанию чистоты и аккуратности рабочего места;
    • воспитывать умение общения в коллективе;
    • осознание учениками того, какую значительную роль играют карбоновые кислоты в жизни человека;
    • формирование мировоззренческих знаний: показать причинно-следственные связи при рассмотрении строения, свойств, применения данных веществ; переход количественных изменений в качественные при рассмотрении гомологического ряда кислот и изменении их физических свойств с увеличением масс.
  • Развития:
    • уметь формулировать определение предельным карбоновым кислотам;
    • уметь составлять названия представителям класса;
    • уметь находить изомеров и гомологов из перечня предложенных веществ;
    • уметь составлять уравнения химических реакций, отражающих химические свойства карбоновых кислот.
  • Образования:
    • сформировать представление о карбоновых кислотах как о классе органических соединений;
    • изучить номенклатуру и изомерию предельных карбоновых кислот, а также их классификацию;
    • изучить гомологический ряд предельных карбоновых кислот;
    • изучить строение карбоновых кислот;
    • рассмотреть свойства карбоновых кислот и их применение.

Оборудование и реактивы: уксусная кислота, муравьиная кислота, универсальная лакмусовая бумажка, метиловый оранжевый, водный экстракт калины, медная проволока, гидроксид железа (III), гидрокарбонат натрия, нитрат серебра, нашатырный спирт (для приготовления аммиачного раствора оксида серебра), раствор перманганата калия; держатель пробирок, спички, спиртовка, пробирки; демонстрационные плакаты, демонстрационные препараты (яйца Kinder Сюрприз), мультимедийные средства, видеоопыт (растворимость карбоновых кислот в воде, взаимодействие уксусной кислоты с металлами), натуральные объекты (лимонад, кетчуп), лист фронтальной работы (ЛФР) (Приложение 1 ).

Методы: словесно-наглядный, лабораторный эксперимент, групповая работа.

Методика: традиционный урок, изучение нового.

ХОД УРОКА

– Добрый день!

«Всякое вещество – от самого простого до самого сложного – имеет три различные, но взаимосвязанные стороны – свойство, состав, строение».

В.М. Кедров

Одной из ведущих идей науки химии является зависимость свойств веществ от их состава и строения, изучить и подтвердить которую нам сегодня предстоит.
Сегодняшний урок посвящён особому классу органических соединений. Какому? Окунёмся в прошлое.
С древнейших времён люди выращивали виноград и запасали впрок виноградный сок. При хранении сок бродил, получалось вино. Если вино скисало, образовывался уксус. Отсюда и понятно происхождение слова «уксус» – от греческого «оксос» – кислый. (Демонстрация рисунка «столовый уксус»).
Люди стали пользоваться уксусом почти 3000 лет назад. В древности уксус был единственной пищевой кислотой. Позднее появилась важная «добавочка» к различным кулинарным изделиям – лимонная кислота… Впервые она выделена из сока незрелых лимонов.
Для придания пище кислого вкуса использовались листья щавеля, стебли ревеня, сок лимона, ягоды кислицы (демонстрация рисунков) . Разумеется, тогда никто и не думал о том, что кислый вкус во всех случаях обусловлен присутствием соединений одного класса. Какого? (Кислот). Органических кислот, которые называют карбоновыми.
В состав клюквы, брусники, черники и мёда входит бензойная кислота. Она широко используется в пищевой промышленности в качестве консерванта (Е210) при изготовлении напитков и кетчупов (демонстрация лимонада и кетчупа) .
У многих насекомых, образующих семьи или просто «сообщества» (термиты, муравьи, осы, пчёлы), вырабатываются в организме особые химические вещества, с помощью которых они оповещают своих соплеменников об опасности. Например, рыжие муравьи обладают феромоном тревоги – муравьиной кислотой, которая одновременно служит их оружием.
Муравьиная кислота встречается также в некоторых растениях, в частности в жгучей крапиве.

– Ребята, сформулируйте тему урока. (Карбоновые кислоты). Запишите число и тему урока.

Исследуя настои, полученные из корней и листьев разных растений, к концу 18 века Карл Шееле выделил винную, лимонную, яблочную, галловую, щавелевую кислоты.

– Сегодняшний урок посвящён одному из классу органических соединений – карбоновым кислотам. Неорганические кислоты вы изучили.

– Какую цель мы поставим на сегодняшнем уроке? (Определить, обладают карбоновые кислоты свойствами неорганических, изучив их состав и строение).

Показываю формулы некоторых карбоновых кислот (Приложение 2 ).

– Что общего вы видите в их строении? (Одну или несколько групп ).
– Мысленно «расчлените» неизвестную функциональную группу на две.
– Какие из изученных групп можно обнаружить в её составе? (Гидроксильную и карбо нильную). Отсюда и название – карбоксильная группа.
– А теперь попробуйте сформулировать определение карбоновым кислотам.

Карбоновые кислоты – органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединённых с углеводородным радикалом.
Вполне очевидно, что познакомиться со всеми кислотами невозможно. Поэтому обратимся к их классификации.

– Глядя на формулы кислот, классифицируйте их на группы по разным критериям.
– По каким критериям вы можете их разделить? (По природе углеводородного радикала, по основности).

(Работа ученика у доски).

Карбоновые кислоты (по природе углеводородного радикала)

Предельные (насыщенные) Непредельные (ненасыщенные) Ароматические

Вспомните классификацию неорганических кислот.
Что понимается под основностью неорганических кислот? (Число атомов водорода, способных замещаться на металл).
Тоже справедливо и для органических кислот.

Карбоновые кислоты (по основности)

Одноосновные Двухосновные Многоосновные



Итак, карбоновые кислоты бывают предельными, непредельными и ароматическими, а также одноосновными, двухосновными и многоосновными.
На сегодняшнем уроке мы изучим одноосновные предельные карбоновые кислоты .
Многообразие карбоновых кислот, как и всех органических соединений, обеспечивают два важных явления.
Какие это явления? (Изомерия и гомология).
Сформулируйте определение гомологам. (Гомологи – это вещества, которые имеют одинаковый качественный состав, но разный количественный состав (отличаются на одну или несколько групп –СН 2), имеют сходное строение, а следовательно – сходные свойства.
У вас на столах находятся листочки, которые вы вклеите в свои тетради (Приложение 3 ). В первой колонке записаны первые члены гомологического ряда карбоновых кислот и некоторые наиболее распространённые другие. Во вторую вы впишите их систематическое название (Самостоятельно с последующей проверкой) . Третья, четвёртая и пятая колонки уже заполнены.
А теперь назовём карбоновые кислоты по систематической номенклатуре. Вспомним правила номенклатуры органических соединений на примере:

В систематической номенклатуре карбоновых кислот используют окончание -овая кислота . Если карбоксильных групп несколько, то используют приставки ди- , три- , тетра- и т.д. Наиболее часто для карбоновых кислот применяются исторически возникшие названия, связанные в большинстве случаев с названием их природных источников. Поэтому, чтобы в дальнейшем хорошо ориентироваться в номенклатуре органических соединений, следует запомнить названия простейших одноосновных кислот.
Первый представитель – муравьиная кислота. В его составе только один атом углерода. Какой углеводород ему соответствует? (Метан). Значит, как будет называться карбоновая кислота? (Метановая кислота). Запишем название.

Формула кислоты

Название

Название кислотного остатка Формула кислотного остатка

Систематическое

Тривиальное
HCOOH Метановая кислота Муравьиная формиат HCOO –
CH 3 COOH Этановая кислота Уксусная ацетат CH 3 COO –
C 2 H 5 COOH Пропановая кислота Пропионовая пропионат C 2 H 5 COO –
C 3 H 7 COOH Бутановая кислота Масляная бутират C 3 H 7 COO –
C 4 H 9 COOH Пентановая кислота Валериановая валерат C 4 H 9 COO –
C 5 H 11 COOH Гексановая кислота Капроновая капрат C 5 H 11 COO –
CH 2 =CH–COOH Пропеновая кислота Акриловая акрилат CH 2 =CH–COO –
C 15 H 31 COOH Гексадекановая кислота Пальмитиновая пальмитат C 15 H 31 COO –
C 17 H 35 COOH Октадекановая кислота Стеариновая стеарат C 17 H 35 COO –

Мы назвали только одно явление, которое обеспечивает многообразие альдегидов. А теперь, посмотрите. (Показываю детям 3 шоколадных яйца Kinder Сюрприз). Внешне они абсолютно одинаковы. У нас тоже есть три абсолютно одинаковые молекулярные формулы веществ. (На доске заранее вывешены 3 плаката закрытой стороной). Открываю их (Приложение 4 ).
Но известно, что это 3 разных вещества. В чём причина? С каким явлением это связано? (С явлением изомерии).
Вот так, как внешне шоколадные яйца одинаковы, внутри содержат совершенно разные игрушки, так и эти вещества имеют одинаковые молекулярные формулы, но разное строение.
Сформулируйте определение изомерам. (Изомеры – вещества, которые имеют одинаковый качественный и количественный состав, но разное строение).
Составьте к веществу с молекулярной формулой C 4 H 8 O 2 изомеры. (Работа у доски) .

Можно составить и другие изомеры. Остановимся на этом.
Сделайте вывод, какие виды изомерии характерны для карбоновых кислот. (Изомерия углеродного скелета (1 и 2) и межклассовая изомерия (например, 1 и 4)).
С каким классом органических соединений изомерны карбоновые кислоты? (Со сложными эфирами).
А теперь назовём 1 и 2 соединения по систематической номенклатуре. (Работа у доски).
Зная систематическое название, можно составить структурную формулу. Составьте формулу 2-гидроксипропановой кислоты. (Работа у доски).

Эта кислота имеет тривиальное название – молочная – принимает активное участие в жизненных процессах. Ещё в прошлом веке И.И. Мечников заметил, что питание молочнокислой продукцией окисляет кишечник от гнилостной микрофлоры и способствует долголетию .
Напомню, свойства вещества зависят от их строения. Обратимся к строению.

В молекуле карбоновой кислоты р -электроны атома О –гидроксильной группы взаимодействуют с электронами π -связи карбонильной группы, в результате чего возникает полярность связи О-Н, упрочняется π -связь в карбонильной группе, уменьшается δ+ заряд на атоме С и увеличивается частичный δ+ на атоме Н . Это способствует образованию прочных водородных связей между молекулами карбоновых кислот.
В гомологическом ряду карбоновых кислот их сила падает с увеличением углеводородного радикала, поэтому наиболее сильной из них является муравьиная кислота. Это объясняется увеличением положительного индукционного эффекта алкильного заместителя в ряду –H > –CH 3 > –C 2 H 5 . Дальнейшее удлинение углеродной цепи не оказывает заметного влияния на величину +I -эффекта и, следовательно, силу кислоты:

Физические свойства карбоновых кислот опишем, выполнив № 4 ЛФР. Выясним, как изменяются физические свойства карбоновых кислот в гомологическом ряду. Посмотрим видеоопыт – растворимость карбоновых кислот в воде.
Вспомним свойства неорганических кислот. (Ответы учащихся).
Кислотные свойства карбоновых кислот аналогичны свойствам слабых неорганических кислот. Неорганические кислоты диссоциируют (растворимые в воде), изменяют окраску индикатора (растворимые в воде), взаимодействуют с металлами, стоящими в электрохимическом ряду напряжения металлов до Н 2 , с амфотерными и основными оксидами, с основаниями, с солями более слабых кислот.
Обладают ли карбоновые кислоты этими свойствами? Проверим.
Повторим правила техники безопасности при работе с кислотами.
При попадании на кожу растворов кислот или щелочей стряхивают видимые капли и затем смывают широкой струёй прохладной воды; запрещается обрабатывать поражённый участок увлажнённым тампоном. Почему?
Выберите правильный ответ.
При ожоге кислотой кожу необходимо обработать раствором:

Нейтрализацию катионов водорода проводить едкой щёлочью нельзя, так как можно получить химические и термические ожоги. Для этой цели используют раствор соды, имеющий щелочную среду. Ответ: 2.

Проведём опыты. (Работа по группам с написанием соответствующих уравнений реакций на доске).

Посмотрим на ребус. . С какой кислотой мы будем работать?

Одна из групп будет исследовать особые свойства муравьиной кислоты , выполнив № 7 ЛФР.

Ход практической работы и предполагаемые ответы учащихся – Приложение 5 .

Взаимодействие уксусной кислоты с металлами – видеоопыт.

А будут ли спирты взаимодействовать с карбоновыми кислотами? (Да).

Такие реакции называют реакциями этерификации .

Реакция этерификации – реакция образования сложных эфиров при взаимодействии кислот и спиртов в присутствии водоотнимающего средства.
В соответствии с механизмом протекания реакции этерификации при образовании сложного эфира от молекулы кислоты отщепляется гидроксильная группа, от молекулы спирта – атом водорода гидроксила:

Применение карбоновых кислот (слайды) .
– Подведем итоги:
– Что нового мы узнали на уроке? Чему научились? Что знаем?

(Краткие ответы учеников).

– Сформулируйте вывод о свойствах карбоновых кислот. (Карбоновые кислоты обладают свойствами неорганических кислот, проявляют специфические свойства).
Растворимые кислоты диссоциируют изменяют окраску индикатора, карбоновые кислоты взаимодействуют с активными металлами с выделением водорода, реагируют с основными и амфотерными оксидами, основаниями, солями более слабых кислот.

– Мы сегодня прошли путь от состава и строения веществ к предсказанию их свойств.

  1. Сформулируйте определение понятию «карбоновые кислоты»?
  2. В чем заключаются особенности классификации кислот?
  3. Какие виды изомерии для них характерны?
  4. В чем особенности номенклатуры карбоновых кислот?
  5. С какими вещества взаимодействуют карбоновые кислоты?
  6. Где находят применение карбоновые кислоты?
  7. В пищевой промышленности уксусная кислота используется в качестве консерванта и регулятора кислотности под кодом Е-260. Напишите структурную формулу предыдущего гомолога этой кислоты, имеющего код Е-236. Назовите вещество по систематической и тривиальной номенклатуре.
  8. Составьте уравнение реакции взаимодействия уксусной кислоты с бромом на свету; гидрирование акриловой кислоты; пропионовой кислоты с метиловым спиртом.

Домашнее задание: §30, ЛФР № 13, 14, 15.

Список литературы

  1. Габриелян О.С. Химия / О.С. Габриелян, И.Г. Остроумова, С.А. Сладков. – М.: / Дрофа, 2011.
  2. Карцова А.А. Химия без формул. – 3-е изд., перераб. – СПб.: Авалон, Азбука-классика, 2005.
  3. Мартыненко Б.В. Химия: кислоты и основания: Пособие для учащихся 8-11 кл. общеобразоват. учреждений. – М.: просвещение, 2000.
  4. Химия в школе, 2008, № 5-80.
  5. Химия в школе, 2010, № 3-80.

Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

  • одноосновные карбоновые кислоты;
  • двухосновные (дикарбоновые) кислоты (2 группы СООН ).

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

Карбоновые кислоты.

Строение карбоновых кислот

Карбоновые кислоты - это органические соединения, которые характеризуются присутствием в их молекулах карбоксильной группы -СООН .



Является функциональной (характеристической) группой этого класса соединений. Примерами карбоновых кислот могут служить:


Свойства карбоновых кислот.

Кислотный характер этих соединений является результатом того, что атом водорода гидроксильной группы способен диссоциировать с образованием иона водорода, например:



Взаимодействуя с основаниями карбоновые кислоты образуют соли:



Карбоновые кислоты являются слабыми кислотами, поэтому их соли подвергаются обратимоми гидролизу. Наиболее сильные из карбоновых кислот муравьиная и уксусная .


Карбоновые кислоты со спиртами образуют сложные эфиры . Сложные эфиры – чрезвычайно важное соединение, очень часто встречающееся в продуктах животного и растительного мира.

Классификация карбоновых кислот.

Карбоновые кислоты можно классифицировать по различным признакам:

  1. По количеству гидрокильных групп (одно- и двухосновные),
  2. По числу атомов углерода (низшие, средние, высшие),
  3. По наличию в них предельных и не предельных связей (предельные и непредельные).
Одноосновные и двухосновные карбоновые кислоты.

Карбоновые кислоты делятся одноосновные и двухосновные в зависимости от кличества в их составе гидроксильных групп ОН.


Все карбоновые кислоты , рассмотренные выше – это примеры одноосновных кислот. В их сотавах содержится по одной гидроксильной группе.


Соответственно, в молекулах двухосновных кислот содержится по две гидроксильных группы. К двухосновным карбоновым кислотам относятся, например, щавелевая или терефталиевая кислоты.


Низшие, средние и высшие карбоновые кислоты.

По числу атомов углерода в молекуле карбоновые кислоты делят на:


Низшие (С1-С3 ),

Средние (С4-С8 ) и

Высшие (С9-С26 ).


Высшие карбоновые кислоты называют высшими жирными кислотами, по причине того, что они входят в состав природных жиров.


Но иногда жирными называют все ациклические карбоновые кислоты. Таким образом, термины «жирные кислоты » и «карбоновые кислоты » часто используются как синонимы .

Предельные и непредельные карбоновые кислоты.

Предельные карбоновые кислоты в своём составе, содержат радикал предельных углеводородов, т.е. радикал только с простыми, одинарными связями.


И наоборот, непредельные карбоновые кислоты в своём составе содержат радикал непредельных углеводородов, т.е. радикал, в котором присутствуют кратные (двойные и тройные) связи.

Высшие карбоновые (жирные) кислоты

Напомним, что высшим карбоновым кислотам относят такие карбоновые кислоты, молекулы которых содержат сравнительно большое число атомов углерода (С9-С26 ).


По причине того, что высшие карбоновые кислоты входят в состав животных и растительных жиров их называют высшими жирными кислотами.



Примеры предельных высших жирных кислот:

  1. Каприновая кислота - C 9 H 19 COOH ,
  2. Лауриновая кислота - С 11 Н 23 СООН ,
  3. Миристиновая кислота - С 13 Н 27 СООН ,
  4. С 15 Н 31 СООН ,
  5. Стеариновая кислота – С 17 Н 35 СООН .

Примеры непредельных высших жирных кислот:

    С 17 Н 33 СООН – имеет одну двойную связь,
  1. Линолевая кислота – С 17 Н 31 СООН - имеет две двойных связи,
  2. Линоленовая кислота – С 17 Н 29 СООН – имеет три двойных связи.

Структурные формулы соединений, в которых присутствуют длинные углеводородный радикалы, часто изображают следующим образом:



В углеводородной цепи атомы углерода расположены не по прямой линии, а виде «змейки». Угол между двумя соседними отрезками такой «змейки» 109 градусов 28 минут. В случае двойной связи угол другой.

В структурной формуле каждая вершина такой «змейки» означает атом углерода, соединённый с двумя атомами водорода. Последний атом углерода соединён с тремя атомами водорода. При этом сами символы углерода (С ) и водорода(Н ) не изображаются.


Предельные и непредельные жирные кислоты имеют в значительной степени различные свойства.


Высшие предельные кислоты – воскообразные вещества, непредельные – жидкости (напоминающие растительное масло).


Натриевые и калиевые соли высших жирных кислот называют мылами .

Например:


C 17 H 35 COONa – стеарат натрия,

С – пальмитат калия.


Натриевые мыла – твёрдые, калиевые – жидкие.

Примеры карбоновых кислот


– жилкость с острым раздражающим запахом.

Температура кипения 118,5 градусов С, при +16,6 градусах С застывает в кристаллическую массу, похожую на лёд.

Смешивается с водой в любых соотношениях.


Широко применяется как прправа к пище и консервирующее средство. В продаже встречается в виде уксусной эссенции (80%) и уксуса (9,3%).


Натуральный или винный уксус – продукт, содержащий уксусную кислоту и получающийся при скисании виноградного вина.


Используется также при синтезе многих органических веществ и в качестве растворителя.


Уксусную кислоту получают преимущественно синтезом из ацетилена – присоединением к нему воды и окислением образующегося уксусного альдегида.


Бензойная кислота простейшая одноосновная кислота ароматического ряда. Формула С 6 Н 5 -СООН .



На вид – бесцветные кристаллы.


– антисептик. Применяется для консервирования пищевых продуктови во многих органических синтезах.


– простейшая двухосновная карбоновая кислота.

Формула НООС-СООН.



– кристаллическое вещество, растворяется в воде, ядовита.


В виде кислой калиевой соли содержится во многих растениях.


Применяется для крашения тканей.


Терефталевая кислота НООС-С 6 Н 4 -СООН

Двухосновная карбоновая кислота ароматического ядра.

Её структурная формула:



Из терефталевой кислоты и этиленгликоля получают синтетическое волокно лавсан.


Может служить примером соединения со смешанными функциями – проявляет свойства кислоты и спирта (спиртокислота )



Она образуется при молочнокислом брожении сахаристых веществ, вызываемых особыми бактериями. Содержится в кислом молоке, рассоле квашеной капусты, силосе.


– аналог молочной кислоты в ароматическом ряду. Имеет строение:



Относится к соединениям со смешанными функциями – проявляет свойства кислоты и фенола (фенолокислота ).


– антисептик. Её используют (особенно её соли и эфиры) как лекарственное вещество.


Также салициловую кислоту используют при синтезе других продуктов.

Практически у всех дома есть уксус. И большинство людей знают, что его основу составляет Но что она представляет собой с химической точки зрения? Какие еще этого ряда существуют и каковы их характеристики? Попробуем разобраться в этом вопросе и изучить предельные одноосновные карбоновые кислоты. Тем более что в быту применяется не только уксусная, но и некоторые другие, а уж производные этих кислот вообще частые гости в каждом доме.

Класс карбоновых кислот: общая характеристика

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов - карбоксильную функциональную группу. Она имеет вид -СООН. Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R - это частица-радикал, которая может включать любое количество атомов углерода.

Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты - это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН - карбоксильные группы.

То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород - самый электроотрицательный в группе. От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия. Поэтому кислоты в соответствующих индикаторах дают подобную реакцию:


Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях.

Классификация

Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них - это природа радикала. По этому фактору выделяют:

  • Алициклические кислоты. Пример: хинная.
  • Ароматические. Пример: бензойная.
  • Алифатические. Пример: уксусная, акриловая, щавелевая и прочие.
  • Гетероциклические. Пример: никотиновая.

Если говорить о связях в молекуле, то также можно выделить две группы кислот:


Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории.

  1. Одноосновные - только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие.
  2. Двухосновные - соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие.
  3. Многоосновные - лимонная, молочная и прочие.

История открытия

Виноделие процветало с самой древности. А, как известно, один из его продуктов - уксусная кислота. Поэтому история известности данного класса соединений берет свои корни еще со времен Роберта Бойля и Иоганна Глаубера. Однако при этом химическую природу этих молекул выяснить долгое время не удавалось.

Ведь долгое время господствовали взгляды виталистов, которые отрицали возможность образования органики без живых существ. Но уже в 1670 году Д. Рэй сумел получить самого первого представителя - метановую или муравьиную кислоту. Сделал он это, нагревая в колбе живых муравьев.

Позже работы ученых Берцелиуса и Кольбе показали возможность синтеза этих соединений из неорганических веществ (перегонкой древесного угля). В результате была получена уксусная. Таким образом были изучены карбоновые кислоты (физические свойства, строение) и положено начало для открытия всех остальных представителей ряда алифатических соединений.

Физические свойства

Сегодня подробно изучены все их представители. Для каждого из них можно найти характеристику по всем параметрам, включая применение в промышленности и нахождение в природе. Мы рассмотрим, что собой представляют карбоновые кислоты, их и другие параметры.

Итак, можно выделить несколько основных характерных параметров.

  1. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости. Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные.
  2. Плотность первых двух представителей превышает единицу. Все остальные легче воды.
  3. Температура кипения: чем больше цепь, тем выше показатель. Чем более разветвленная структура, тем ниже.
  4. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже.
  5. В воде растворяются очень хорошо.
  6. Способны образовывать прочные водородные связи.

Такие особенности объясняются симметрией строения, а значит, и строением кристаллической решетки, ее прочностью. Чем более простые и структурированные молекулы, тем выше показатели, которые дают карбоновые кислоты. Физические свойства данных соединений позволяют определять области и способы использования их в промышленности.

Химические свойства

Как мы уже обозначали выше, данные кислоты могут проявлять свойства разные. Реакции с их участием важны для промышленного синтеза многих соединений. Обозначим самые главные химические свойства, которые может проявлять одноосновная карбоновая кислота.

  1. Диссоциация: R-COOH = RCOO - + H + .
  2. Проявляет то есть взаимодействует с основными оксидами, а также их гидроксидами. С простыми металлами взаимодействует по стандартной схеме (то есть только с теми, что стоят до водорода в ряду напряжений).
  3. С более сильными кислотами (неорганические) ведет себя как основание.
  4. Способна восстанавливаться до первичного спирта.
  5. Особая реакция - этерификации. Это взаимодействие со спиртами с образованием сложного продукта - эфира.
  6. Реакция декарбоксилирования, то есть отщепления от соединения молекулы углекислого газа.
  7. Способна взаимодействовать с галогенидами таких элементов, как фосфор и сера.

Очевидно, насколько многогранны карбоновые кислоты. Физические свойства, как и химические, достаточно разнообразны. Кроме того, следует сказать, что в целом по силе как кислоты все органические молекулы достаточно слабы по сравнению со своими неорганическими коллегами. Их константы диссоциации не превышают показателя 4,8.

Способы получения

Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты.

1. В лаборатории это делают окислением:

  • спиртов;
  • альдегидов;
  • алкинов;
  • алкилбензолов;
  • деструкцией алкенов.

2. Гидролиз:

  • сложных эфиров;
  • нитрилов;
  • амидов;
  • тригалогеналканов.

4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов.

5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты.

Основные соединения предельных карбоновых кислот: соли

Соли карбоновых кислот - важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с:

  • металлами;
  • основными оксидами;
  • щелочами;
  • амфотерными гидроксидами.

Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами - пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия - мыла, жидкие и твердые.

Мыла

Так, если речь идет о подобной реакции: 2C 17 H 35 -COOH + 2Na = 2C 17 H 35 COONa + H 2 ,

то образующийся продукт - стеарат натрия - это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья.

Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия - жидкое мыло для мытья рук. Поэтому можно с уверенностью заявлять, что соли карбоновых кислот - это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах. Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы.

Эфиры карбоновых кислот

Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий - реакции этерификации. Общий вид можно представить уравнением:

R , -COOH + R"-OH = R , -COOR" + H 2 O.

Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения. Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды. Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира.

Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как:

  • пищевые добавки;
  • ароматические добавки;
  • составной компонент парфюма;
  • растворители;
  • компоненты лаков, красок, пластмасс;
  • медикаментов и прочее.

Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности.

Этановая кислота (уксусная)

Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее - СН 3 СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки.

  1. Она является пищевой добавкой под кодом Е-260.
  2. Используется в пищевой промышленности для консервации.
  3. Применяется в медицине для синтеза лекарственных средств.
  4. Компонент при получении душистых соединений.
  5. Растворитель.
  6. Участник процесса книгопечатания, крашения тканей.
  7. Необходимый компонент в реакциях химических синтезов множества веществ.

В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной.

Муравьиная кислота

Самый первый и простой представитель данного класса. Формула - НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники:

  • муравьи и пчелы;
  • крапива;
  • хвоя;
  • фрукты.

Основные области использования:

Также в хирургии растворы данной кислоты используют как антисептические средства.