Во все времена человечество делилось на тех, кто считает себя сторонником теории эволюции, и тех, кто считает себя ее противником. Современная наука накопила достаточно фактического материала, который иллюстрирует доказательство эволюции. Эмбриологические исследования дают огромную пищу для размышлений.

Именно об этапах развития зародыша различных филогенетических групп животных мы расскажем в этой статье и приведем примеры эмбриологических доказательств эволюции в животном мире.

Ввод в общую теорию

В биологии под понятием "эволюция" подразумевают длительный процесс развития жизни на Земле. В результате этого сложнейшего процесса образовалось все многообразие живых форм, четко приспособленных к условиям своего существования.

Существуют морфо-физиологические, генетические, микробиологические, палеонтологические и эмбриологические доказательства эволюции.

Эмбриология - биологическая наука, которая занимается изучением развития зародыша из зиготы до рождения детеныша. Сюда относится и развитие малька в икринках рыб, и развитие птенца в яйцах птиц, и развитие младенца в утробе матери.

Стадии развития как доказательная база

Эмбриологическими доказательствами эволюции считают:

  • Схожесть этапов развития зародыша разных филогенетических групп животных на ранних стадиях эмбрионального формирования.
  • Закон Мюллера-Геккеля о том, что особь повторяет в эмбриогенезе историю возникновения своего вида.
  • Все панмиктичные (разнополые и размножающиеся половым путем) организмы начинают свое развитие с зиготы - оплодотворенной яйцеклетки. Это одно из главных эмбриологических доказательств эволюции.

Механизм эмбриогенеза

Важно понимать, что изменения затрагивают не сам организм, а программы, заложенные генетически. Программы эмбрионального развития конкретного организма (онтогенез), как правило, на эмбриональном этапе намного проще, чем программы развития взрослого организма. Зародыш развивается путем самоорганизации, когда следующий этап развития запускается посредством предыдущего. Гены-активаторы уже довольно успешно изучает практическая молекулярная биология.

Стадии эмбриогенеза

Как уже говорилось, развитие особей панмиктичных видов начинается с момента зачатия (оплодотворения женских гамет мужскими). Образовавшаяся зигота начинает делиться. В эмбриогенезе выделяют следующие стадии:

  • Образование зиготы (оплодотворение).
  • Стадия морулы, когда зигота поделилась на 32 клетки (бластомеры). Все клетки морулы одинаковы и полипотентны (могут развиваться в отдельный организм).
  • Стадия бластулы, когда бластомеров уже 128. Зародыш представляет собой однослойный шар клеток, потерявших свойства полипотентности, с полостью внутри (бластоцель).
  • Стадия гаструлы. Это двухслойный зародыш. Инвагинация клеток бластулы образует наружный слой (эктодерма) и внутренний слой (энтодерма) зародыша.
  • Когда между экто- и энтодермальными слоями формируется слой мезодермы, стадия называется бластулой. Зародыш приобретает трехслойность, а слои называют зародышевыми листками. Именно из них сформируются ткани, органы и системы органов будущего организма.

От зиготы к бластуле

На стадии морулы зародыша трудно определить его видовую принадлежность. И даже до стадии бластулы зародыши разных групп трудноотличимы.

На стадии закладки зародышевых листков начинаются отличия, которые характерны для зародышей организмов филогенетической группы. Стадии дробления зиготы на начальных стадиях эмбриогенеза идут одинаково и совершенно однотипно для всех многоклеточных животных. И это является неоспоримым эмбриологическим доказательством эволюции многоклеточных.

Далее - сложнее

После формирования гаструлы и зародышевых листков начинается дифференциация клеток. Однако в однородной филогенетической группе схожесть закладки и формирования частей тела и органов сохраняется. Это наглядно иллюстрирует развитие зародыша позвоночных животных. Доказательство эволюции - эмбриологические черты сходства строения и формирования зародыша многоклеточных. Например, у всех позвоночных имеется четкое разграничение головного, туловищного и хвостового отделов тела, зачаточные жабры, хвост и первичный одинарный круг кровообращения.

История эволюции в зародыше

На основании данных эмбриологии возможно проследить весь ход эволюции конкретного организма. Именно этот закон ввели в биологию Ф. Мюллер и Э. Геккель: онтогенез есть краткое и быстрое повторение филогенеза. Например, у всех зародышей млекопитающих имеются зачатки жаберных дуг и мешков. В дальнейшем они превращаются в среднее ухо, миндалины, тимус и щитовидные железы. Но расположение кровеносных и нервных путей сохраняется. Вот почему гортанный возвратный нерв млекопитающих идет от мозга по гортани к аорте, огибает ее и возвращается к гортани. Именно так иннервируется круг нервных волокон вокруг жабр у рыб, что является эмбриологическим доказательством эволюции млекопитающих от водных предков.

Еще несколько примеров

Как иллюстрация к вышесказанному: можно увидеть наличие зубов у зародыша усатого кита. А у эмбриона некоторых змей развиваются зачаточные нижние конечности, которые в позднем эмбриогенезе рассасываются. У китов даже во взрослом состоянии имеются рудиментарные задние конечности, которые представлены несколькими косточками. У эмбриона человека в возрасте 4 недели есть хвост из 10-12 позвонков, и длина его составляет около 10% от длины всего эмбриона. В течение эмбриогенеза часть позвонков рассасывается, у человека остается только копчик - 4 хвостовых позвонка.

  • 11.Рнк - полимеразы. Строение, виды, функции.
  • 12.Инициация транскрипции. Промотор, стартовая точка.
  • 13. Элонгация и терминация транскрипции.
  • 14. Гетерогенная ядерная днк. Процессинг, сплайсинг.
  • 15. Арс-азы. Особенности строения, функции.
  • 16.Транспортная рнк. Строение, функции. Строение рибосом.
  • 17.Синтез полипептидной молекулы. Инициация и элонгация.
  • 18.Регуляция активности генов на примере лактозного оперона.
  • 19. Регуляция активности генов на примере триптофанового оперона.
  • 20.Негативный и позитивный контроль генетической активности.
  • 21.Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.
  • 22. Гистоны. Структура нуклеосом.
  • 23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
  • 24.Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
  • 25. Хар-ка хромосомного набора человека. Денверская номенклатура.
  • 27. . Классификация мутаций по изменению силы и направленности действия мутантного аллеля.
  • 28. Геномные мутации.
  • 29. Структурные перестройки хромосом: виды, механизмы образования. Делеции, дупликации, инверсии, инсерции, транслокации.
  • 30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации.
  • 31.Физические, химические и биологические мутагены
  • 32. Механизмы репарации днк. Фотореактивация. Болезни, связанные с нарушением процессов репарации.
  • 34. Хромосомные болезни, общая характеристика. Моносомии, трисомии, нулисомии, полные и мозаичные формы, механизм нарушения распределения хромосом в первом и втором мейозе.
  • 35. Хромосомные болезни, вызванные структурными перестройками хромосом.
  • 2.2. Наследование признаков, сцепленных с полом.
  • 37. Хромосомное определение пола и его нарушения.
  • 38. Дифференцировка пола на уровне гонад и фенотипа, ее нарушения.
  • 39. Хромосомные болезни, обусловленные аномалиями половых хромосом: синдром Шерешевского - Тернера, синдром Кляйнфельтера, полисомии по х и у- хромосомам.
  • 40. Хромосомные болезни, обусловленные аномалиями аутосом: синдромы Дауна, Эдвардса, Патау.
  • 41. Сущность и значение клинико-генеалогического метода, сбор данных для составления родословных, применение генеалогического метода.
  • 42.Критерии доминантного типа наследования на родословных: аутосомные, сцепленные с х - хромосомой и голандрические признаки.
  • 43. Критерии рецессивного типа наследования на родословных: аутосомные и сцепленные с х - хромосомой признаки.
  • 44. Вариабельность в проявлении действия гена: пенетрантность, экспрессивность. Причины вариабельности. Плейотропное действие гена.
  • 45. Мгк, цель, задачи. Показание направления в мгк. Проспективное и ретроспективное консультирование.
  • 46. Пренатальная диагностика. Методы: уз, амниоцентез, биопсия ворсин хориона. Показания к пренатальной диагностике.
  • 47. Сцепление и локализация генов. Метод картирования, предложенный т. Морганом.
  • 49. Гибридные клетки: получение, характеристика, использование для картирования.
  • 50. Картирование генов с использованием морфологических нарушений хромосом (транслокаций и делеций).
  • 51. Картирование генов у человека: метод днк-зондов.
  • 53. Митоз и его биологическое значение. Проблемы клеточной пролиферации в медицине.
  • 54. Мейоз и его биологическое значение
  • 55. Сперматогенез. Цитологические и цитогенетические характеристики.
  • 56. Овогенез. Цитологические и цитогенетические характеристики.
  • 58. Взаимодействие неаллельных генов. Комплементарность.
  • 59. Взаимодействие неаллельных генов. Эпистаз, его виды
  • 60. Взаимодействие неаллельных генов. Полимерия, ее виды.
  • 61. Хромосомная теория наследственности. Полное и неполное сцепление генов.
  • 62. Зигота, морула и формирование бластулы.
  • 63. Гаструляция. Типы гаструл.
  • 64. Основные этапы эмбриогенеза. Зародышевые листки и их производные. Гисто - и органогенез.
  • 65. Провизорные органы. Анамнии и амниоты.
  • 66. Генетическая структура популяции. Популяция. Дем. Изолят. Механизмы нарушения равновесия генов в популяции.
  • 68. Генетический груз, его биологическая сущность. Генетический полиморфизм.
  • 69. История становления эволюционных идей.
  • 70. Сущность представлений Дарвина о механизмах эволюции живой природы.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.
  • 72. Учение а.И.Северцова о филэмбриогенезах.
  • 73. Вид. Популяция - элементарная единица эволюции. Основные характеристики популяции.
  • 74. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция и их характеристика.
  • 75. Формы видообразования и их характеристика.
  • 76. Формы естественного отбора и их характеристика.
  • 78. Предмет антропологии, ее задачи и методы
  • 79. Конституциональные варианты человека в норме по Сиго.
  • 80. Конституциональные варианты человека в норме по э.Кречмеру.
  • 81. Конституциональные варианты человека в норме по в.Н.Шевкуненко и а.М.Геселевич.
  • 82.Конституциональные варианты человека в норме по Шелдону
  • 83. Доказательства животного происхождения человека.
  • 84.Место человека в системе классификации в системе животного мира. Морфо-физиологические отличия человека от приматов.
  • 85. Палеонтологические данные о происхождении приматов и человека.
  • 86. Древнейшие люди - архантропы.
  • 87. Древние люда - палеоантропы.
  • 88. Неоантропы.
  • 89.Расы - как выражение генетического полиморфизма человечества.
  • 90.Биоценоз, биотоп, биогеоценоз, компоненты биогеоценоза.
  • 91.Экология как наука. Направления экологии.
  • 93.Глобальные экологические проблемы.
  • 94.Абиотические факторы: энергия Солнца; температура.
  • 95. Абиотические факторы: осадки, влажность; ионизирующие излучения.
  • 96. Экосистема. Виды экосистем.
  • 97. Адаптивные экологические типы человека. Тропический адаптивный тип. Горный адаптивный тип.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.

    Палеонтологические доказательства эволюции . Ископаемые остатки - основа восстановления облика древних организмов. Сходство ископаемых и современных организмов - доказательство их родства. Условия сохранения ископаемых остатков и отпечатков древних организмов. Распространение древних, примитивных организмов в наиболее глубоких слоях земной коры, а высокоорганизованных - в поздних слоях.

    Переходные формы (археоптерикс, зверозубый ящер), их роль в установлении связей между систематическими группами. Филогенетические ряды - ряды последовательно сменяющих друг друга видов (на примере эволюции лошади или слона).

    2. Сравнительно-анатомические доказательства эволюции :

    1) клеточное строение организмов. Сходство строения клеток организмов разных царств;

    2) общий план строения позвоночных животных - двусторонняя симметрия тела, позвоночник, полость тела, нервная, кровеносная и другие системы органов;

    3) гомологичные органы, единый план строения, общность происхождения, выполнение различных функций (скелет передней конечности позвоночных животных);

    4) аналогичные органы, сходство выполняемых функций, различие общего плана строения и происхождения (жабры рыбы и речного рака). Отсутствие родства между организмами с аналогичными органами;

    5) рудименты - исчезающие органы, которые в процессе эволюции утратили значение для сохранения вида (первый и третий пальцы у птиц в крыле, второй и четвертый пальцы у лошади, кости таза у кита);

    6) атавизмы - появление у современных организмов признаков предков (сильно развитый волосяной покров, многососковость у человека).

    3. Эмбриологические доказательства эволюции :

    1) при половом размножении развитие организмов из оплодотворенной яйцеклетки;

    2) сходство зародышей позвоночных животных на ранних стадиях их развития. Формирование у зародышей признаков класса, отряда, а затем рода и вида по мере их развития;

    3) биогенетический закон Ф. Мюллера и Э. Гек-келя - каждая особь в онтогенезе повторяет историю развития своего вида (форма тела личинок некоторых насекомых - доказательство их происхождения от червеобразных предков).

    72. Учение а.И.Северцова о филэмбриогенезах.

    ФИЛЭМБРИОГЕНЕ́З - эволюционное изменение онтогенеза органов, тканей и клеток, связанное как с прогрессивным развитием, так и с редукцией. Учение о филэмбриогенезе разработано российским биологом-эволюционистом А.Н. Северцовым. Модусы (способы) филэмбриогенеза различаются по времени возникновения в процессе развития этих структур.Если развитие определенного органа у потомков продолжается после той стадии, на которой оно заканчивалось у предков, происходит анаболия (от греч.anabole- подъем) - надставка конечной стадии развития. Примером может служить формирование четырехкамерного сердца у млекопитающих. У земноводных сердце трехкамерное: два предсердия и один желудочек. У пресмыкающихся в желудочке развивается перегородка (первая анаболия), однако эта перегородка у большинства из них неполная - она только уменьшает перемешивание артериальной и венозной крови. У крокодилов и млекопитающих развитие перегородки продолжается до полного разделения правого и левого желудочков (вторая анаболия). У детей иногда как атавизм межжелудочковая перегородка бывает недоразвитой, что ведет к тяжелому заболеванию, требующему хирургического вмешательства.

    Продление развития органа не требует глубоких изменений предшествующих стадий его онтогенеза, поэтому анаболия - наиболее распространенный способ филэмбриогенеза. Предшествующие анаболиям стадии развития органов остаются сопоставимыми с этапами филогенеза предков (т. е. являются рекапитуляциями) и могут служить для его реконструкции (см. Биогенетический закон). Если развитие органа на промежуточных стадиях уклоняется от того пути, по которому шел его онтогенез у предков, происходит девиация. Например, у рыб и у пресмыкающихся чешуи возникают как утолщения эпидермиса и подстилающего его соединительно-тканного слоя кожи - кориума. Постепенно утолщаясь, эта закладка выгибается наружу. Затем у рыб кориум окостеневает, формирующаяся костная чешуя протыкает эпидермис и выдвигается на поверхность тела. У пресмыкающихся, напротив, кость не образуется, но эпидермис ороговевает, образуя роговые чешуи ящериц и змей. У крокодилов кориум может окостеневать, образуя костную основу роговых чешуй. Девиации приводят к более глубокой, чем анаболии, перестройке онтогенеза, поэтому они встречаются реже.

    Реже всего возникают изменения первичных зачатков органов - архаллаксисы. При девиации рекапитуляцию можно проследить от закладки органа до момента уклонения развития. При архаллаксисе рекапитуляции нет. Примером может служить развитие тел позвонков у земноводных. У ископаемых земноводных - стегоцефалов и у современных бесхвостых земноводных тела позвонков формируются вокруг хорды из нескольких, обычно трех с каждой стороны тела, отдельных закладок, которые затем сливаются, образуя тело позвонка. У хвостатых земноводных эти закладки не возникают. Окостенение разрастается сверху и снизу, охватывая хорду, так что сразу образуется костная трубка, которая, утолщаясь, становится телом позвонка. Этот архаллаксис является причиной до сих пор дискутируемого вопроса о происхождении хвостатых земноводных. Одни ученые считают, что они произошли непосредственно от кистеперых рыб, независимо от остальных наземных позвоночных. Другие - что хвостатые земноводные очень рано дивергировали от остальных земноводных. Третьи, пренебрегая развитием позвонков, доказывают близкое родство хвостатых и бесхвостых земноводных.

    Редукция органов , утративших свое адаптивное значение, тоже происходит путем филэмбриогенеза, главным образом, посредством отрицательной анаболии - выпадения конечных стадий развития. При этом орган либо недоразвивается и становится рудиментом, либо претерпевает обратное развитие и полностью исчезает. Примером рудимента может служить аппендикс человека - недоразвитая слепая кишка, примером полного исчезновения - хвост головастиков лягушек. В течение всей жизни в воде хвост растет, на его конце добавляются новые позвонки и мышечные сегменты. Во время метаморфоза, когда головастик превращается в лягушку, хвост рассасывается, причем процесс идет в обратном порядке - от конца к основанию. Филэмбриогенез - основной способ адаптивного изменения строения организмов в ходе филогенеза.

    ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

    § 17. Доказательства эволюции

    Для обоснования теории эволюции Ч. Дарвин широко использовал многочисленные доказательства из области палеонтологии, биогеографии, морфологии. Впоследствии были получены факты, воссоздающие историю развития органического мира и служащие новыми доказательствами единства происхождения живых организмов и изменяемости видов в природе.

    Палеонтологические находки - едва ли не самые убедительные доказательства протекания эволюционного процесса. К ним относятся окаменелости, отпечатки, ископаемые остатки, ископаемые переходные формы, филогенетические ряды, последовательность ископаемых форм. Рассмотрим более подробно некоторые из них.

    1. Ископаемые переходные формы - формы организмов, сочетающие признаки более древних и молодых групп.

    Среди растений особый интерес представляют псилофиты. Они произошли от водорослей, первыми из растений осуществили переход на сушу и дали начало высшим споровым и семенным растениям. Семенные папоротники - переходная форма между папоротниковидными и голосеменными, а саговниковые - между голосеменными и покрытосеменными.

    Среди ископаемых позвоночных можно выделить формы, являющиеся переходными между всеми классами этого подтипа. Например, древнейшая группа кистеперых рыб дала начало первым земноводным - стегоцефалам (рис. 3.15, 3.16). Это было возможно благодаря характерному строению скелета парных плавников кистеперых рыб, имевших анатомические предпосылки для превращения их в пятипалые конечности первичных земноводных. Известны формы, образующие переход между рептилиями и млекопитающими. К ним относятся звероящеры (иностранцевия) (рис. 3.17). А связующим звеном между пресмыкающимися и птицами явилась пер-воптица (археоптерикс) (рис. 3.18).

    Наличие переходных форм доказывает существование филогенетических связей между современными и вымершими организмами и помогает в построении естественной системы и родословного древа растительного и животного мира.

    2. Палеонтологические ряды - ряды ископаемых форм, связанные друг с другом в процессе эволюции и отражающие ход филогенеза (от греч. phylon - род, племя, genesis - происхождение). Классическим примером применения рядов ископаемых форм для выяснения истории отдельной группы животных является эволюция лошади. Русский ученый В.О. Ковалевский (1842-1883) показал постепенность эволюции лошади, установив, что сменяющие друг друга ископаемые формы приобретали все большее сходство с современными (рис. 3.20).

    Современные однопалые животные произошли от мелких пятипалых предков, живших в лесах 60-70 млн лет назад. Изменение климата привело к увеличению площади степей и расселению по ним лошадей. Передвижение на большие расстояния в поиске пищи и при защите от хищников способствовало преобразованию конечностей. Параллельно увеличивались размеры тела, челюстей, усложнялось строение зубов и др.

    К настоящему времени известно достаточное количество палеонтологических рядов (хо ботных, хищных, китообразных, носорогов, некоторых групп беспозвоночных), которые доказывают существование эволюционного процесса и возможность происхождения одного вида от другого.

    Морфологические доказательства основаны на принципе: глубокое внутреннее сходство организмов может показать родство сравниваемых форм, следовательно, чем больше сходство, тем ближе их родство.

    1. Гомология органов. Органы, име ющие сходное строение и общее происхождение, называются гомологичными. Они занимают одинаковое положение в теле животного, развиваются из сходных зачатков и имеют одинаковый план строения. Типичный пример гомологии - конечности наземных позвоночных животных (рис. 3.21). Так, скелет свободных передних конечнрс-тей у них обязательно имеет плечевую кость, предплечье, состоящее из лучевой и локтевой костей, и кисть (запястье, пясть и фаланги пальцев). Такая же картина гомологии отмечается при сравнении скелета задних конечностей. У лошади грифельные косточки гомологичны пястным косточкам второго и четвертого пальцев других копытных. Очевидно, что у современной лошади эти пальцы исчезли в процессе эволюции.

    Доказано, что ядовитые железы змей - гомолог слюнных желез других животных, жало пчелы - гомолог яйцеклада, а сосущий хоботок бабочек - гомолог нижней пары челюстей других насекомых.

    Гомологичные органы есть и у растений. Например, усики гороха, колючки кактуса и барбариса - видоизмененные листья.

    Установление гомологии органов позволяет найти степень родства между организмами.

    2. Аналогия. Аналогичные органы - это органы, имеющие внешнее сход ство и выполняющие одинаковые фун кции, но имеющие разное происхож дение. Эти органы свидетельствуют лишь о сходном направлении приспо соблений организмов, определяемом в

    процессе эволюции действием естественного отбора. Наружные жабры головастиков, жабры рыб, многощетинковых кольчатых червей и водных личинок насекомых (например, стрекоз) аналогичны. Бивни моржа (видоизмененные клыки) и бивни слона (разросшиеся резцы) - типичные аналогичные органы, так как их функции сходны. У растений аналогичны колючки барбариса (видоизмененные листья), колючки белой акации (видоизмененные прилистники) и шиповника (развиваются из клеток коры).

    • Рудименты. Рудиментарными (от лат. rudimentum - зачаток, первоос нова) называются органы, которые закладываются в ходе эмбрионального раз вития, но в дальнейшем перестают развиваться и остаются у взрослых форм в недоразвитом состоянии. Другими словами, рудименты - это органы, утра тившие свои функции. Рудименты - ценнейшие доказательства историчес кого развития органического мира и общности происхождения живых форм. Например, у муравьедов рудиментарны зубы, у человека - ушные мышцы, кожная мускулатура, третье веко, а у змей - конечности (рис. 3.22).
    • Атавизмы. Появление у отдельных организмов какого-либо вида признаков, которые существовали у отдаленных предков, но были утраче ны в ходе эволюции, называется атавизмом (от лат. atavus - предок). У человека атавизмами являются хвост, волосяной покров на всей повер хности тела, многососковость (рис. 3.23). Среди тысяч однопалых лоша дей встречаются экземпляры с трехпалыми конечностями. Атавизмы ненесут каких-либо функций, важных для вида, но показывают историческую взаимосвязь между вымершими и ныне существующими родственными формами.

    Эмбриологические доказатель ства. В первой половине 19 в. русский эмбриолог К.М. Бэр (1792-1876) сформулировал закон зародышевого сходства: чем более ранние стадии индивидуального развития исследуются, тем больше сходства обнаруживается между различными организмами.

    Например, на ранних стадиях развития эмбрионы позвоночных не отличаются друг от друга. Только на средних стадиях появляются особенности, характерные для рыб и амфибий, а на более поздних - особенности развития рептилий, птиц и млекопитающих (рис. 3.24). Эта закономерность в развитии зародышей указывает на родство и последовательность расхождения в эволюции этих групп животных.

    Глубокая связь между индивидуальным и историческим выражается в биогенетическом законе, установленном во второй половине 19 в. немецкими учеными Э. Геккелем (1834-1919) и Ф. Мюллером (1821-1897). Согласно этому закону каждая особь в своем индивидуальном развитии (онтогенезе) повторяет историю развития своего вида, или онтогенез есть краткое

    и быстрое повторение филогенеза. Например, у всех позвоночных животных в онтогенезе закладывается хорда - признак, который был свойствен их отдаленным предкам. У головастиков бесхвостых земноводных развивается хвост, что является повторением признаков их хвостатых предков.

    В дальнейшем в биогенетический закон были внесены поправки и дополнения. Особый вклад в выяснение связей онто- и филогенеза внес русский ученый А.Н. Северцов (1866-1936).

    Ясно, что за такой короткий срок, как индивидуальное развитие, не могут быть повторены все этапы эволюции. Поэтому повторение стадий исторического развития вида в зародышевом развитии происходит в сжатой форме, с выпадением многих этапов. Вместе с тем зародыши организмов одного вида сходны не со взрослыми формами другого вида, а с их зародышами. Так, жаберные щели у зародыша человека в месячном возрасте сходны с аналогичными у зародыша рыбы, а не взрослой рыбы. Это означает, что в онтогенезе млекопитающие проходят стадии, сходные с зародышами рыб, а не со взрослыми рыбами.

    Следует отметить, что еще Ч. Дарвин обратил внимание на явление повторения в онтогенезе черт строения предковых форм.

    Все приведенные выше сведения имеют большое значение для доказательства эволюции и для выяснения родственных связей между организмами.

    Биогеографические доказательства. Биогеография - это наука о закономерностях современного расселения животных и растений на Земле.

    Вы уже знаете из курса физической географии, что современные географические зоны сформировались в ходе исторического развития Земли, в результате действия климатических и геологических факторов. Знаете и о том, что часто сходные природные зоны оказываются заселены различными организмами, а разные зоны - сходными. Найти объяснения этим фактам можно только с позиций эволюции. Например, своеобразие флоры и фауны Австралии объясняется обособлением ее в далеком прошлом, в связи с чем развитие животного и растительного мира происходило в изоляции от других материков. Следовательно, биогеография вносит много доказательств в эволюцию органического мира.

    В настоящее время для доказательства эволюционных процессов широко используются методы биохимии и молекулярной биологии, генетики, иммунологии.

    Так, изучая состав и последовательность нуклеотидов в нуклеиновых кислотах и аминокислот в белках у разных групп организмов и обнаруживая сходство, можно судить об их родстве.

    Биохимия располагает методами исследования, с помощью которых можно выяснить «кровное родство» организмов. При сравнении белков крови учитывается способность организмов в ответ на введение в кровь чужих белков вырабатывать антитела. Эти антитела можно выделить из сыворотки крови и определить, при каком разведении эта сыворотка будет реагировать с сывороткой сравниваемого организма. Такой анализ показал, что ближайшие родственники человека - высшие человекообразные обезьяны, а наиболее дальние из них - лемуры.

    Эволюция органического мира на Земле подтверждается множеством фактов из всех областей биологии: палеонтологии (филогенетические ряды, переходные формы), морфологии (гомология, аналогия, рудименты, атавизмы), эмбриологии (закон зародышевого сходства, биогенетический закон), биогеографии и др.

    1. Что изучает палеонтология и какие палеонтологические доказательства эволюции вы знаете? 2. Чем отличаются гомологичные органы от аналогичных и каково их значение в доказательстве эволюции? 3. Какие из перечисленных органов относятся к гомологичным, а какие к аналогичным: жабры рыбы, рака; чашелистики, лепестки, тычинки, пестик, листья; колючки барбариса, усики гороха, усики винограда? 4. О чем свидетельствуют рудименты и атавизмы? 5. В чем суть и значение закона зародышевого сходства? 6. Почему сумчатые животные встречаются преимущественно в Австралии? 7. Какие методы используются в настоящее время для доказательства родства между организмами разных видов?

    Общая биология: Учебное пособие для 11-го класса 11-летней общеобразовательной школы, для базового и повышенного уровней. Н.Д. Лисов, Л.В. Камлюк, Н.А. Лемеза и др. Под ред. Н.Д. Лисова.- Мн.: Беларусь, 2002.- 279 с

    Содержание учебника Общая биология: Учебное пособие для 11-го класса:

      Глава 1. Вид - единица существования живых организмов

    • § 2. Популяция - структурная единица вида. Характеристика популяции
    • Глава 2. Взаимоотношения видов, популяций с окружающей средой. Экосистемы

    • § 6. Экосистема. Связи организмов в экосистеме. Биогеоценоз, структура биогеоценоза
    • § 7. Движение вещества и энергии в экосистеме. Цепи и сети питания
    • § 9. Круговорот веществ и поток энергии в экосистемах. Продуктивность биоценозов
    • Глава 3. Формирование эволюционных взглядов

    • § 13. Предпосылки возникновения эволюционной теории Ч. Дарвина
    • § 14. Общая характеристика эволюционной теории Ч. Дарвина
    • Глава 4. Современные представления об эволюции

    • § 18. Развитие эволюционной теории в последарвиновский период. Синтетическая теория эволюции
    • § 19. Популяция - элементарная единица эволюции. Предпосылки эволюции
    • Глава 5. Происхождение и развитие жизни на Земле

    • § 27. Развитие представлений о возникновении жизни. Гипотезы происхождения жизни на Земле
    • § 32. Основные этапы эволюции растительного и животного мира
    • § 33. Многообразие современного органического мира. Принципы систематики
    • Глава 6. Происхождение и эволюция человека

    Основные группы аргументов:

    1. Наблюдаемая эволюция

    2. Эволюционное дерево

    3. Палеонтологические доказательства

    4. Морфологические доказательства

    5. Эмбриологические доказательства

    6. Молекулярно-генетические и биохимические доказательства

    7. Биогеографические доказательства

    1. Наблюдаемая эволюция

    Все наблюдаемые виды мутаций (например, создание копий генов с разделением ф-ий между копиями – гомеозисные гены) как основа эволюционных новшеств

    Различие хромосомных наборов (ХН) – не препятствие для скрещивания (полиморфизм ХН у кабана; многие растения получились путем объединения наборов хромосом)

    2. Эволюционное дерево

    Биологический вид - единственное точно обозначаемое понятие в эволюции и единица классификации (рода, семейства и проч. – не имеют четких самостоятельных критериев) по критерию полного или почти полного отсутствия скрещиваний с другими видами в природе (а не генетической несовместимости!). Это главный но не единственный критерий.

    Эволюционные деревья, построенные по разным данным (по отдельным генам, некодирующим участкам, морфологическому строению, палеонтологической летописи, эмбриологии), соответствуют друг другу. Это совпадение без труда объясняется эволюционной теорией

    3. Палеонтологические доказательства

    Ископаемая летопись постоянно пополняется.

    Принцип суперпозиции геологических слоев Стенона и основанная на нем наука стратиграфия позволяют, сравнивая ископаемые формы из последовательных напластований, делать выводы о направлениях эволюции. Для оценки возраста окаменелостей используются методы датировки, которые разделяются на относительные (стратиграфические) и абсолютные (радиометрические методы, люминисцентные, методы электронно-парамагнитного резонанса и др.). Эти независимые оценки хорошо совпадают!

    При взгляде на палеонтологическую летопись видно постепенное накопление все новых форм организмов от прошлого к современности.

    Первые простейшие одноклеточные появляются приблизительно 3.5 млрд лет назад. Первые одноклеточные эукариоты появляются 1.75 млрд лет назад. Еще через миллиард лет, немногим более 635 млн лет назад, в палеонтологической летописи появляются первые многоклеточные животные - губки. Через несколько десятков млн лет находим первых червей и моллюсков, а еще через 15 млн лет - первых примитивных позвоночных, похожих на современных миног.

    Насекомые - 400 млн лет назад, и еще 100 млн лет суша покрыта папоротниками и населена насекомыми и земноводными. С 230 по 65 млн лет назад на Земле господствуют динозавры, самые распространенные растения - саговники и другие голосеменные. Первые цветковые растения появляются 100 млн лет назад. Чем ближе к современности, тем больше сходства имеют ископаемые флоры и фауны с современными.


    Наблюдаемая картина соответствует эволюционной теории и не имеет других научных объяснений (всемирный потоп и катастрофизм не выдерживают научной критики)

    «Микро-» и «макроэволюция» ничем принципиально не отличаются. Макроэволюция - это просто сумма множества последовательных микроэволюционных событий. Наблюдать можно только ее итог, но не сам процесс, который длится миллионы лет.

    4. Морфологические доказательства

    Если идея эволюции верна, мы должны наблюдать в живой природе повсеместные следы происхождения путем модификации, то есть многочисленные свидетельства "переделки" и "подгонки" старых признаков (органов, тканей, планов строения) под новые условия (экологические ниши) и новые задачи (функции). Именно это мы и наблюдаем в природе.

    Гомологичные органы

    Органы животных разных видов, имеющие один и тот же план строения, занимающие сходное положение в организме и развивающиеся из одних и тех же зачатков, называют гомологичными. Если такие органы со сходным строением у разных видов выполняют разные функции, то единственное тому простое объяснение - происхождение от общего предка

    Рудименты

    Органы, утратившие своё основное значение в процессе эволюции. Это также структуры, редуцированные и обладающие меньшими возможностями по сравнению с соответствующими структурами у других организмов. Многие рудиментарные органы не являются бесполезными и выполняют второстепенные функции.

    Желудочно-кишечный тракт млекопитающих пересекается с дыхательными путями, в результате мы не можем одновременно дышать и глотать, а кроме того можем подавиться. Эволюционное объяснение этого заключается в том, что предками млекопитающих являются кистепёрые рыбы, которые заглатывали воздух, чтобы дышать и легкие у них сформировались как выросты пищевода.

    Атавизмы

    Появление у особи признаков, свойственных отдаленным предкам. Появление атавизмов объясняется тем, что гены, отвечающие за данный признак, сохранились в ДНК, и в норме подавляются действием других генов, но иногда проявляют себя. Признаки, ставшие бесполезными, могут сохраняться в течение миллионов лет в виде записи в ДНК, постепенно редуцируясь и разрушаясь под грузом мутаций.

    Примеры атавизмов:

    1. Хвостовидный придаток у человека;

    2. Сплошной волосяной покров на теле человека;

    3. Добавочные пары молочных желез;

    4. Задние ноги у китов;

    5. У куриного эмбриона в челюстях могут формироваться зачатки зубов;

    6. Задние ноги у змей;

    7. Дополнительные пальцы у лошадей;

    5. Эмбриологические доказательства

    Свидетельства эволюции в индивидуальном развитии организмов

    1) Эволюционируют (меняются) не взрослые организмы и их признаки, а генетические программы их индивидуального развития (онтогенеза). Данные эмбриологии свидетельствуют о том, что алгоритм развития каждого вида живых организмов является модификацией алгоритмов развития его предков.

    2) Генетическая программа онтогенеза многоклеточных животных, как ни странно, сама по себе содержит меньше информации, чем получающийся на ее основе взрослый организм. Новая информация "самозарождается" в ходе онтогенеза (процесс самоорганизации) с участием окружающей среды. Гены не кодируют форму конечности в точности, они лишь задают ее положение и основные части. При этом есть «разрешенные» и «запрещенные» состояния системы (аналоги – снежинки, шахматы).

    3) Индивидуальное развитие многоклеточных организмов довольно часто повторяет отдельные этапы его эволюционной истории (биогенетический закон). Это связано с тем что эволюционно более ранние приобретения уже давно связаны с другими жизненно важными признаками и их изменение нежелательно, а более поздние признаки еще пластичны и могут меняться. Поэтому приобретение нового идет по «принципу аддитивности», т.е. добавления или надстройки нового к старому.

    Даже очень непохожие друг на друга животные проходят одинаковые ранние стадии развития: зигота (оплодотворенное яйцо), бластула, гаструла и др., повторяя этапы перехода к многоклеточности и другие эволюционные приобретения. У всех позвоночных животных наблюдается сходство зародышей на ранних стадиях развития: форма тела, зачатки жаберных дуг, хвост, один круг кровообращения и т. д. (закон зародышевого сходства Карла Бэра). Но по мере развития сходство между зародышами постепенно стирается и начинают преобладать черты, свойственные их классам, семействам, родам, и, наконец, видам.

    Kрупные морфологические перестройки могут быть обусловлены не только генетическими, но и так называемыми эпигенетическими механизмами, связанными с управлением и регуляцией работы генов.

    6. Молекулярно-генетические и биохимические доказательства

    Молекулярно-генетические

    1) Выяснение того факта, что ДНК постоянно мутирует является обоснованием теории эволюции (без изменчивости нет Э. теории). Несмотря на мутации «вещество наследственности" (полинуклеотиды ДНК и РНК), и генетический код оказались одинаковыми у всех без исключения форм жизни - от вирусов до человека – что соотвествует представлению об их изначальном родстве с точки зрения эволюции.

    Эволюционная теория в отличие от антиэволюционистов может логически объяснить почему генетический код практически не меняется в ходе всей эволюции и одинаков у всех организмов. Предположим что тРНК мутировала и стала кодировать данную АК другим кодоном. Тогда во ВСЕХ белках клетки где это случилось произойдет взаимозамена этих АК и все белки изменятся. Если это произошло в гамете, то она даже не разовьется в организм. Т.е. это безусловно элиминируется отбором как крайне вредная мутация. Такой жесткий контроль должен был происходить даже в самом начале эволюции, когда видов было еще совсем мало. На самом деле снабдить разные виды существ разными генетическими кодами было бы очень заманчиво – это оградило бы их, например, от проникновения чужих вирусов. Более того – это теоретически вполне возможно.

    2) Различия между геномами видов хорошо соответствуют независимо построенным филогенетическом деревьям и палеонтологической летописи. Оценки родства и времени расхождения видов по «молекулярным часам» обычно лишь дополняет и уточняет эволюционную картину.

    Пример : согласно данным палеонтологии, общий предок человека и шимпанзе жил примерно 6 миллионов лет назад (ископаемые находки оррорина и сахелантропа - форм, морфологически близких к общему предку человека и шимпанзе). Для того, чтобы получилось наблюдаемое число различий между геномами (1%), на каждый миллиард нуклеотидов должно было приходиться в среднем 30 изменений за одно поколение. Сегодня у людей скорость мутаций составляет 10-50 изменений на миллиард нуклеотидов за одно поколение, т.е. результаты совпадают.

    3) Несмотря на то, что белки сохраняют функции и после многих замен АК, и несмотря на избыточность генетического кода, позволяющего разные варианты нуклеотидных последовательностей без изменения структуры белков (т.е. нейтральные мутации) -аминокислотные последовательности большинства белков у близкородственных видов (например, у шимпанзе и человека), как правило, очень похожи, что можно объяснить только происхождением от общего предка. Так, подавляющее большинство гомологичных белков человека и шимпанзе различаются лишь на 1-2 аминокислоты или не различаются вовсе.

    4) Установление родства по сходству ДНК откалибровано на группах людей с детально известной и датированной родословной очень точно (население Исландии, царские династии и проч.). Это позволяет применять метод и для восстановления связей даже там где нет исторических данных. Так родство человека и шимпанзе устанавливается даже не по высокому сходству ДНК (ядерной - на 99%, митохондриальной на 91% - т.к. там мутации на порядок чаще), а по преобладанию нейтральных мутаций (без замен АК) над значимыми в 7-8 раз, что и предсказывается эволюционной теорией. Кроме того в большинстве случаев (44 из 58) для кодирования одной и той же аминокислоты в геноме человека и шимпанзе используется один и тот же триплет хотя мог бы использоваться другой (пример: АК треонин кодируется любым из четырех кодонов: ACA, ACT, ACG, ACC). Вероятность случайного совпадения здесь ничтожна.

    Для человека шимпанзе и горилла по такому же совпадению нейтральных мутаций ДНК – это ближайшие виды-родственники, а макака - дальний. Результаты сравнения генов и белков подтверждают представления о родственных связях между видами (эволюционном древе), которые сложились задолго до "прочтения" геномов. Аналогичные результаты получаются при сравнении практически любых генов в любых группах организмов. Каждый может убедиться в этом лично, поскольку все прочтенные гены и программное обеспечение для их анализа находятся в свободном доступе.

    Биохимическое единство жизни

    Если не бояться замены выражения «единство происхождения» на «единство творения» то общие биохимические черты жизни можно было бы тоже считать доказательством общего эволюционного происхождения.

    В ДНК всех организмов используются 4 нуклеотида (аденин, гуанин, тимин, цитозин), хотя в природе встречаются не менее 102 различных нуклеотидов. Кроме того, в природе встречается 390 различных АК тогда как живым используется только 20+2. Код используется тоже единый, хотя возможно 1.4*1070 различных эквивалентных генетических кодов. Даже направление закрученности одного типа биомолекул одинаково (ДНК – вправо, белки – влево). У всех есть гликолиз и АТФ.

    Но единство именно происхождения, а не творения, в данном случае лучше доказывают как раз мелкие различия на фоне бесспорного сходства.

    2-я хромосома человека

    После слияния двух хромосом остаются характерные следы: остатки теломер и рудимертарная центромера. У всех человекообразных обезьян 24 пары хромосом, за исключением людей, у которых их 23. Человеческая 2-я хромосома является результатом слияния двух хромосом предков.

    Эндогенные ретровирусы

    Эндогенные ретровирусы (ЭР)- следы древних вирусных инфекций в ДНК (1% ДНК человека). Ретровирусы встраиваются в геном случайным образом, вероятность независимой встройки одинаковых вирусов на одинаковые позиции у двух разных организмов пренебрежимо мала. А значит, встроенный геном одного и того же ретровируса может присутствовать у двух животных на одной и той же позиции в ДНК только в том случае, если эти животные произошли от общего предка.

    Действительно распространение ЭР в хорошо изученных группах видов (приматы) соответствует независимо построенному филогенетическому древу: чем ближе виды эволюционно, тем больше у них сходства картины встроенных в ДНК ЭР.

    Псевдогены

    Это неработающие, "молчащие" гены, которые возникают в результате мутаций, выводящих нормальные "рабочие" гены из строя. Это «генетические рудименты», которые могут много рассказать о прошлом данного вида.

    Пример: ярким доказательством эволюции является присутствие одинаковых псевдогенов в одних и тех же местах генома у видов, произошедших недавно от общего предка. Так, у человека есть псевдоген GULO, который представляет собой "сломанный" ген фермента синтеза аскорбиновой кислоты. У других приматов обнаружен точно такой же псевдоген, причем мутационная "поломка"у него такая же, как и в человеческом псевдогене. Причины: в связи с переходом предков современных приматов к питанию растительной пищей, богатой витамином C, этот ген перестал быть необходимым.

    У других млекопитающих (например, у крысы) GULO является не псевдогеном, а работающим геном, и поэтому крысам не нужно получать витамин C с пищей: они синтезируют его сами. В группах млекопитающих, которые независимо от приматов перешли к питанию пищей, богатой витамином С, тоже произошла псевдогенизация гена GULO, но мутации, выведшие ген из строя, у них были другие (пример – морские свинки).

    7. Биогеографические доказательства

    Географическое распространение животных и растений соответствует их эволюционной истории

    Если два вида недавно произошли от одной популяции, то они как правило обитают недалеко от ареала исходной популяции, а значит недалеко друг от друга. Таким образом, с точки зрения эволюционной теории географическое распределение видов должно быть совместимо с филогенетическим деревом. Если не принимать во внимание теорию эволюции, то разумно предположить, что виды живут в наиболее подходящих для них условиях. Теория эволюции же предсказывает, что должно быть много благоприятных для вида мест, в которых представители вида тем не менее отсутствуют в связи с наличием географических барьеров. Так и есть в природе.

    Примеры: сумчатые встречаются почти исключительно в Австралии (раньше они водились и на других материках, но впоследствии вымерли вытесненные плацентарными конкурентами). Но условия Австралии вполне подходят для плацентарных - так завезенные кролики и собаки заселили весь континент. Двоякодышашие рыбы и бескилевые птицы (страусы, киви) встречаются только на юге Южной Америки, Африки и Австралии (расхождение Гондваны в мезозое). Условия обитания в пустынях Африки, Америки и Австралии очень похожи, и растения из одной пустыни хорошо растут в другой. Тем не менее, кактусы были обнаружены только в Америке.

    Островная биогеография

    Примеры: в Новой Зеландии до появления человека не было змей, и даже млекопитающих, но было много эндемичных древних птиц и растений. На Гавайских островах тоже живет множество эндемичных (нигде больше не встречающихся) птиц, растений и насекомых, но на них полностью отсутствуют местные пресноводные рыбы, амфибии, рептилии и наземные млекопитающие. Сейчас завезенные людьми млекопитающие заполнили эти о-ва и вытесняют местную фауну. На Галапагоссах есть эндемичные птицы, случайно завезенные туда игуана и черепахи, но нет млекопитающих, амфибий и пресноводных рыб. Исключение – только летучие мыши. При этом на тех же островах местные эндемичные виды дали мощную близкородственную радиацию (пример – вьюрки на Галапагоссах). Или почему предполагаемый разумный дизайнер создал эндемичные виды летучих мышей на островах, но не создал там других млекопитающих? Объясняется это просто: наземные млекопитающие практически неспособны пересекать широкие проливы, а летучие мыши умеют летать.

    Еще одним свидетельством в пользу эволюции является высокое сходство островных флор и фаун с флорами и фаунами ближайших массивов суши. Например, животный и растительный мир Галапагосских островов, несмотря на все своеобразие, явно связан тесными родственными связями с флорой и фауной ближайшего материка - Южной Америки. Там где по суше возник переход - фауны переходят одна в другую в соответствии с временем образования этого перехода (Берингийская суша, Панамский перешеек). Например в Ю.Америке очень своеобразная флора и фауна (броненосцы, ламы, муравьеды), но нет сейчас местных копытных, тк они давно вымерли, а новые не смогли туда снова проникнуть с севера. Причем чем южнее – тем она своеобразнее (это коррелирует с геологическим временем изоляции) (см. Дж. Симпсон «Великолепная изоляция» 1980).

    Соответствие резкости биогеографических границ между фаунами геологической истории

    Там где по суше возник переход - фауны переходят одна в другую в соответствии с временем образования этого перехода (Берингийская суша, Панамский перешеек). Например в Ю.Америке очень своеобразная флора и фауна (броненосцы, ламы, муравьеды), но нет сейчас местных копытных, тк они давно вымерли, а новые не смогли туда снова проникнуть с севера. Причем чем южнее – тем она своеобразнее (это коррелирует с геологическим временем изоляции). Верблюды и мозоленогие имеют североамериканское происхождение, а дальше группа распространялась с одного конца в Южную Америку, с другого - в Старый Свет через берингийский перешеек. На месте своего возникновения они вымерли, что подтверждает набор ископаемых.

    Заселение изолированных территорий

    Попав на большой остров с бедной фауной (или, для водных животных - в большое озеро), виды-вселенцы с большой вероятностью испытают адаптивную радиацию - быстрое видообразование, в ходе которого они займут ряд свободных экологических ниш. Кроме галапагосских вьюрков, хорошие примеры таких быстрых адаптивных радиаций - это рачки-бокоплавы озера Байкал (зачем Создателю нужно было создавать специально для озера Байкал 250 нигде больше не встречающихся видов рачков-бокоплавов, пусть антиэволюционисты придумывают сами), рыбы-цихлиды Великих Африканских озер (Малави, Виктория), мушки дрозофилы и птицы нектарницы Гавайских островов и др.

    Параллельная эволюция на разобщенных массивах суши

    Трудно объяснить иначе, как с точки зрения эволюции, почему на разных континентах существуют внешне сходные формы, но совершенно разные по ряду других, более глубоких признаков, больше роднящих их с внешне непохожими видами на том же континенте. Так, Внешне сумчатая летяга больше похожа на обычную летягу, чем на сумчатого крота или сумчатого муравьеда. Однако по анатомическим и эмбриологическим признакам, а также по нуклеотидным последовательностям ДНК, она гораздо ближе к другим австралийским сумчатым. Поэтому ее и относят к отряду сумчатых, а белку-летягу - к отряду грызунов.

    Распространение ископаемых видов согласуется с эволюционным деревом и палеогеографическими реконструкциями

    Древнейшие окаменелости сумчатых найдены в Северной Америке, их возраст около 80 млн лет. 40 миллионов лет назад сумчатые уже были распространены в Южной Америке, но в Австралии, где они сейчас доминируют, сумчатые появились только около 30 млн лет назад. Теория эволюции предсказывает, что австралийские сумчатые произошли от американских. Согласно теории тектоники плит 30-40 млн лет назад Южная Америка и Австралия еще оставались частью Гондваны, крупного континента в южном полушарии, а между ними находилась будущая Антарктида. На основании двух теорий исследователи предсказали, что сумчатые мигрировали из Южной Америки в Австралию через Антарктиду 30-40 миллионов лет назад. Это подтвердилось находками в 1982г. останков сумчатых возрастом 35-40 млн лет на антарктических о-вах.

    Положение материков не было неизменным. Южная Америка с Австралией были до эоцена (30 млн лн), соединены через Антарктиду, которая в это время еще не была обмерзшая. Сумчатые действительно происходят из Северной Америки (там самые старые их находки), оттуда они проникают в Южную Америку и через Антарктиду - в Австралию. В Старом Свете сумчатые так и не проникли ни в Восточную Азию, ни в Африку по ряду причин. Поэтому заселение Австралии через север, через Зондский архипелаг, для сумчатых невозможен. Сходство крайней южной фауны и флоры Америки, Африки и Австралии с Новой Зеландией – объясняется тем, что у них был один источник – Антарктида, которая была 40 млн лет назад вполне приятным местом по климату.

    Ближайшие живые родственники современных людей - гориллы и шимпанзе - обитают в Африке. Исходя из этого, в 1872 г. Дарвин предположил, что и древних предков человека следует искать в Африке. Многие ученые последовали совету Дарвина, и начиная с 1920-х годов в Африке было найдено множество промежуточных форм между человеком и человекообразными обезьянами. Если бы ископаемых австралопитеков обнаружили, например, в Австралии, а не в Африке, то теорию эволюции пришлось бы пересматривать.

    Гипотеза становится теорией, когда есть доказательства. И у эволюционной теории таких доказательств много.

    Интерпретация этих фактов - совсем другое дело, здесь ученым предстоит еще очень много поработать….

    Самые первые доказательства, с которыми столкнулись ученые - палеонтологические.

    Палеонтология занимается останками - костями, отпечатками и т.д.

    Откуда мы знаем, что раньше млекопитающих не было и миллионы лет назад по планете бродили динозавры? По найденным костям, реже - по целым скелетам.

    А как человечество узнало о древних беспозвоночных или о растениях того периода? По отпечаткам, фрагментам тканей, окаменелостям и т.д.

    Морфологические доказательства эволюции

    Во-первых, это гомологичные и аналогичные органы.

    Гомологичные органы - имеют общее происхождение.
    Аналогичные - различное, но внешне похожи.

    Прежде, чем мы разберем критерии этих органов и примеры, давайте рассмотрим два пути, по которым шла эволюция.

    Путь №1 - дивергенция
    .

    В переводе это слово означает “расхождение”, “отклонение”.

    Представим, что когда-то существовал один вид какого-то животного. Затем какая-то группа особей этого вида решила освоить новую территорию. На этой территории были новые условия и под их воздействием вид менялся, эволюционировал, приобретал новые признаки. В результате, его органы немного видоизменились.

    Так появились гомологичные органы.

    Путь №2 - конвергенция

    В переводе - “сближение”,” объединение”.

    Представим, что существуют два разных типа животных. Но условия обитания у них одинаковые (например, водная или воздушная среда). Соответственно, они развиваются, эволюционируют, вырабатывают
    приспособления к данной среде обитания. Эти приспособления (органы) будут очень схожи, но происхождение у них все же будет разное.

    Мы получаем аналогичные органы.

    Признак Гомологи Аналоги
    Происхождение Общее Различное
    Функции Могут быть различными Общие
    Эволюционный путь Дивергенция Конвергенция
    Примеры: Конечности оленя, кита, летучей мыши

    Видоизменения листьев у растений

    крылья птиц и крылья членистоногих,

    у растений - колючки на стебле и колючки - листья

    Во-вторых, это атавизмы и рудименты.

    Информации об этом есть очень много, здесь мы разберем суть их отличий:

    Характеристики

    Атавизмы

    Рудименты

    Функции нет, являются лишними, не считаются нормой для большинства ныне живущих некоторые могут выполнять какие-то функции, другие не используются, есть у всех представителей вида.
    Эволюционно были развиты и функционировали у очень дальних предков, сохранились в ДНК и изредка проявляются в настоящее время были развиты и функционировали как у предков, так и у ближайших сородичей
    Примеры у человека: хвост,

    у животных: дополнительные пальцы на ноге лошади

    у человека: ушные мышцы, зубы мудрости

    у животных: тазовые кости кита

    Эмбриологические доказательства

    Если посмотреть на развитие зародышей некоторых млекопитающих, то на ранних стадиях видны сходства, которые просто удивляют. Изучение этих сходств позволило ученым сделать определенные выводы.

    Одним из таких ученых был немецкий ученый Карл Бэр.

    Ирония ситуации в том, что сам ученый отвергал теорию Дарвина, однако теперь его труды используются для доказательства эволюционной теории:)

    “ на ранних этапах развития обнаруживается поразительное сходство в строении зародышей животных, относящихся к разным классам (при этом эмбрион высшей формы похож не на взрослую животную форму, а на её эмбрион...” К.Бэр

    Позже этот вывод был переформулирован Эрнстом Геккелем:

    Онтогенез (индивидуальное развитие) живого организма повторяет его филогенетическое (историческое) развитие.

    Биогеографические доказательства

    Географическое распространение животных и растений соответствует их эволюционной истории.

    Например, видовой состав многих островов определялся географической изоляцией.
    В Австралии, например, можно встретить животных, которых нет на континенте - эндемики.
    Есть даже палеоэндемики - “живые ископаемые” - в других местах они вымерли, но изолированных местах остались.

    Биохимические доказательства эволюции

    Молекула ДНК хранит в себе информацию о филогенезе организма; в ней зафиксирована как наследственность, так и изменчивость.
    общий химический (органический и неорганический) состав,
    генетический код является общим для всего живого: и для прокариотов - бактерий, и для эукариотических организмов.
    процесс гликолиза - одинаковый для всех эукариотических систем и молекула АТФ - общий “поставщик энергии” для всего живого