Еще до установления природы света были известны следующие законы геометрической оптики (вопрос о природе света не рассматривался).

  • 1. Закон независимости световых лучей: эффект, производимый отдельным лучом, не зависит от того, действуют ли одновременно остальные лучи или они устранены.
  • 2. Закон прямолинейного распространения света: свет в однородной прозрачной среде распространяется прямолинейно.

Рис. 21.1.

  • 3. Закон отражения света: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол отражения /|" равен углу падения /, (рис. 21.1): i[ = i x .
  • 4. Закон преломления света (закон Снелля, 1621): падающий луч, преломленный луч и перпендикуляр

к поверхности раздела двух сред, проведенный в точке падения луча, лежат в одной плоскости; при преломлении света на границе раздела двух изотропных сред с показателями преломления п х и п 2 выполняется условие

Полное внутреннее отражение - это отражение светового луча от границы раздела двух прозрачных сред в случае его падения из оптически более плотной среды в оптически менее плотную среду под углом /, > / пр, для которого выполняется равенство

где « 21 - относительный показатель преломления (случай л, > п 2).

Наименьший угол падения / пр, при котором весь падающий свет полностью отражается в среду /, называется предельным углом полного отражения.

Явление полного отражения используется в световодах и призмах полного отражения (например, в биноклях).

Оптической длиной пути L между точками Ли В прозрачной среды называют расстояние, на которое свет (оптическое излучение) распространился бы в вакууме за то же время, за которое он проходит от А до В в среде. Так как скорость света в любой среде меньше его скорости в вакууме, то L всегда больше реально проходимого расстояния. В неоднородной среде

где п - показатель преломления среды; ds - бесконечно малый элемент траектории луча.

В однородной среде, где геометрическая длина пути света равна s, оптическая длина пути будет определяться как

Рис. 21.2. Пример таутохронных путей света (SMNS" > SABS")

Три последних закона геометрической оптики можно получить из принципа Ферма (ок. 1660): в любой среде свет распространяется по такому пути, для прохождения которого ему требуется минимальное время. В случае, когда это время является одинаковым для всех возможных путей, все пути света между двумя точками называются таутохронными (рис. 21.2).

Условию таутохронизма удовлетворяют, например, все пути лучей, проходящих через линзу и дающих изображение S" источника света S. Свет распространяется по путям неравной геометрической длины за одно и то же время (рис. 21.2). Именно то, что испущенные из точки S лучи одновременно и через наименьшее возможное время собираются в точке S", позволяет получить изображение источника S.

Оптическими системами называется совокупность оптических деталей (линз, призм, плоскопараллельных пластинок, зеркал и т.п.), скомбинированных для получения оптического изображения или для преобразования светового потока, идущего от источника света.

Различают следующие типы оптических систем в зависимости от положения предмета и его изображения: микроскоп (предмет расположен на конечном расстоянии, изображение - на бесконечности), телескоп (и предмет, и его изображение находятся в бесконечности), объектив (предмет расположен в бесконечности, а изображение - на конечном расстоянии), проекционная система (предмет и его изображение расположены на конечном расстоянии от оптической системы). Оптические системы находят применение в технологическом оборудовании для оптической локации, оптической связи и т.д.

Оптические микроскопы позволяют исследовать объекты, размеры которых меньше минимального разрешения глаза, равного 0,1 мм. Использование микроскопов дает возможность различать структуры с расстоянием между элементами до 0,2 мкм. В зависимости от решаемых задач микроскопы могут быть учебными, исследовательскими, универсальными и т.д. Например, как правило, металлографические исследования образцов металлов начинаются с помощью метода световой микроскопии (рис. 21.3). На представленной типичной микрофотографии сплава (рис. 21.3, а) видно, что поверхность фольг сплава алюминия с медью со-


Рис. 21.3. а - зеренная структура поверхности фольги сплава А1-0,5 ат.% Си (Шепелевич и др., 1999); б - поперечное сечение по толщине фольги сплава А1-3,0 ат.% Си (Шепелевич и др., 1999) (гладкая сторона - сторона фольги, контактирующая с подложкой при затвердевании) держит области более мелких и более крупных зерен (см. подтему 30.1). Анализ зеренной структуры шлифа поперечного сечения толщины образцов показывает, что микроструктура сплавов системы алюминий - медь изменяется по толщине фольг (рис. 21.3, б).

МИНИМАЛЬНЫЙ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО ФИЗИКЕ (РАЗДЕЛ “ОПТИКА, ЭЛЕМЕНТЫ АТОМНОЙ И ЯДЕРНОЙФИЗИКИ”) ДЛЯ ЗАОЧНИКОВ

1. Световое излучение и его характеристики

Свет представляет собой материальный объект, обладающий двойственной природой (корпускулярно-волновым дуализмом). В одних явлениях свет ведёт себя как электромагнитная волна (процесс колебаний электрических и магнитных полей распространяющийся в пространстве), в других – как поток особых частиц - фотонов или квантов света .

В электромагнитной волне вектора напряжённости электрического поля E, магнитного поля H и скорость распространения волны V взаимно перпендикулярны и образуют правовинтовую систему.

Вектора E и H колеблются в одной фазе. Для волны выполняется условие:

При взаимодействии световой волны с веществом наибольшую роль играет электрическая составляющая волны (магнитная составляющая в немагнитных средах влияет слабее), поэтому вектор E (напряжённость электрического поля волны) называют световым вектором и его амплитуду обозначают А.

Характеристикой переноса энергии световой волны является интенсивность I – это количество энергии переносимое за единицу времени световой волной через единицу площади, перпендикулярной направлению распространения волны. Линию, по которой распространяется энергия волны, называется лучом .

2. Отражение и преломление плоской волны на границе 2-х диэлектриков. Законы отражения и преломления света.

Закон отражения света : луч падающий, луч отражённый и нормаль к границе раздела

сред в точке падения лежат в одной плоскости. Угол падения равен углу отражения (α =β ). Причём падающий и отражённый лучи лежат по разные стороны нормали.

Закон преломления света : луч падающий, луч преломлённый и нормаль к границе раздела сред в точке падения лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления – величина постоянная для данных двух сред и называется относительным показателем преломления или показателем преломления второй среды относительно первой.

sin α / sin γ = n21 = n2 / n1

где n 21 - относительный показатель преломления второй среды относительно первой,

n 1, n 2 - абсолютные показатели преломления первой и второй сред (т.е. показатели преломления сред по отношению к вакууму).

Среду, у которой показатель преломления больше, называют оптически более плотной . При падении луча из оптически менее плотной в оптически более плотную среду (n2 >n1 )

угол падения больше угла преломления α>γ (как на рис.).

При падении луча из оптически более плотной в оптически менее плотную среду (n 1 > n 2 ) угол падения меньше угла преломления α< γ . При некотором угле падения

преломленный луч будет скользящим к поверхности (γ =90о ). Для углов больше этого угла падающий луч полностью отражается от поверхности (явление полного внутреннего отражения ).

Относительный показатель n21

и абсолютные показатели преломления сред n1 и n2 можно

также выразить через скорости света в средах

n 21 =

n 1 =

Где с - скорость света в вакууме.

3. Когерентность. Интерференция световых волн. Интерференционная картина от двух источников.

Когерентность – согласованное проникание двух или более колебательных процессов. Когерентные волны при сложении создают интерференционную картину. Интерференция – процесс сложения когерентных волн, заключающийся в перераспределении энергии световой волны в пространстве, которое наблюдается в виде тёмных и светлых полос.

Причина отсутствия наблюдения интерференции в жизни – это некогерентность естественных источников света. Излучение таких источников образуется совокупностью излучений отдельных атомов, каждый из которых в течение ~10-8 с испускает «обрывок» гармонической волны, который называется цугом .

Когерентные волны от реальных источников можно получить, разделяя волну одного источника на два и более, затем, давая возможность им пройти разные оптические пути, свести их в одной точке на экране. Пример – опыт Юнга.

Оптическая длина пути световой волны

L = n l ,

где l - геометрическая длина пути световой волны в среде с показателем преломления п.

Оптическая разность хода двух световых волн

∆ = L 1 −L 2 .

Условие усиления света (максимумов) при интерференции

∆ = ± k λ , где k=0, 1, 2, 3 , λ - длина световой волны.

Условие ослабления света (минимумов)

∆ = ± (2 k + 1 ) λ 2 , где k=0, 1, 2, 3 ……

Расстояние между двумя интерференционными полосами, создаваемыми двумя когерентными источниками света на экране, расположенном параллельно двум когерентным источникам света

∆y = d L λ ,

где L - расстояние от источников света до экрана, d - расстояние между источниками

(d <

4. Интерференция в тонких пленках. Полосы равной толщины, равного наклона, кольца Ньютона.

Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки

∆ = 2 d n 2 −sin 2 i ± λ 2 или ∆ = 2 dn cos r ± λ 2

где d - толщина пленки; n - показатель преломления пленки; i - угол падения; r - угол преломления света в пленке.

Если зафиксировать угол падения i и взять плёнку переменной толщины, то для определённых участков с толщиной d реализуются интерференционные полосы равной

толщины. Эти полосы можно получить, если направить параллельный пучок света на пластинку с разной толщиной в разных местах.

Если на плоскопараллельную пластинку (d = const) направить расходящийся пучок лучей (т.е. пучок, который обеспечит различные углы падения i ), то при наложении лучей, падающих под определенными одинаковыми углами, будут наблюдаться интерференционные полосы, которые называют полосами равного наклона

Классический пример полос равной толщины – кольца Ньютона . Они образуются, если на плосковыпуклую линзу, лежащую на стеклянной пластине, направить монохроматический пучок света. Кольца Ньютона представляют собой интерференционные полосы от областей с равной толщиной воздушного промежутка между линзой и пластинкой.

Радиус светлых колец Ньютона в отраженном свете

где k =1, 2, 3 …… - номер кольца; R - радиус кривизны. Радиус темных колец Ньютона в отраженном свете

r k = kR λ , где k =0, 1, 2, 3 …….

5. Просветление оптики

Просветление оптики – состоит в том, что на поверхность стеклянной детали наносится тонкая прозрачная плёнка, которая за счёт интерференции устраняет отражение падающего света, повышая, таким образом, светосилу прибора. Показатель преломления

просветляющей пленки n должен быть меньше показателя преломления стеклянной детали

n об . Толщина этой просветляющей пленки находится из условия ослабления света при интерференции по формуле

d min = 4 λ n

6. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Векторная диаграмма зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии).

Дифракция света это совокупность явлений, заключающихся в перераспределении светового потока при прохождении световой волны в средах с резкими неоднородностями. В узком смысле дифракция – это огибание волнами препятствий. Дифракция света приводит к нарушению законов геометрической оптики, в частности – законов прямолинейного распространения света.

Между дифракцией и интерференцией нет принципиальной разницы, т.к. оба явления приводят к перераспределению энергии световой волны в пространстве.

Различают дифракцию Фраунгофера и дифракцию Френеля.

Дифракция Фраунгофера – дифракция в параллельных лучах. Наблюдается когда экран или точка наблюдения расположены далеко от препятствия.

Дифракция Френеля – это дифракция в сходящихся лучах. Наблюдается на близком расстоянии от препятствия.

Качественно явление дифракции объясняется принципом Гюйгенса : каждая точка фронта волны становит источником вторичных сферических волн, а новый фронт волны представляет собой огибающую этих вторичных волн.

Френель дополнил принцип Гюйгенса идеей о когерентности и интерференция этих вторичных волн, что дало возможность рассчитывать интенсивность волны для разных направлений.

Принцип Гюйгенса-Френеля : каждая точка фронта волны становится источником когерентных вторичных сферических волн, а новый фронт волны образуется в результате интерференции этих волн.

Френель предложил симметричные волновые поверхности разбивать на особые зоны, расстояния от границ которых до точки наблюдения различаются на λ/2. Соседние зоны действуют в противофазе, т.е. амплитуды, создаваемые соседними зонами в точке наблюдения, вычитаются. Для нахождения амплитуды световой волны в методе зон Френеля используется алгебраическое сложение амплитуд, создаваемых в этой точке зонами Френеля.

Радиус внешней границы m -ой кольцевой зоны Френеля для сферической волновой поверхности

r m = m a ab + b λ ,

где a –расстояние от источника света до волновой поверхности, b – расстояние от волновой поверхности до точки наблюдения.

Векторная диаграмма зон Френеля представляет собой спираль. Использование векторной диаграммы упрощает нахождение амплитуды результирующего колебания

напряженности электрического поля волны A (и, соответственно, интенсивности I ~A 2 ) в центре дифракционной картины при дифракции световой волны на различных препятствиях. Результирующий вектор А от всех зон Френеля представляет собой вектор, соединяющих начало и конец спирали.

При дифракции Френеля на круглом отверстии в центре дифракционной картины будет наблюдаться тёмное пятно (минимум интенсивности), если в отверстии укладывается чётное число зон Френеля. Максимум (светлое пятно) наблюдается, если в отверстии укладывается нечётное число зон.

7. Дифракция Фраунгофера на щели.

Угол ϕ отклонения лучей (угол дифракции), соответствующий максимуму (светлая полоса) при дифракции на одной узкой щели, определяется из условия

b sin ϕ = (2 k + 1) λ 2 , где k= 1, 2, 3,...,

Угол ϕ отклонения лучей, соответствующий минимуму (темная полоса) при дифракции на узкой щели, определяется из условия

b sin ϕ = k λ , где k= 1, 2, 3,...,

где b - ширина щели; k - порядковый номер максимума.

Зависимость интенсивности I от угла дифракции ϕ для щели имеет вид

8. Дифракция Фраунгофера на дифракционной решетке.

Одномерная дифракционная решётка представляет собой систему из периодически расположенных прозрачных и непрозрачных для света областей.

Прозрачная область – это щели шириной b . Непрозрачные области – щели с шириной a . Величина a+b=d называется периодом (постоянной ) дифракционной решётки. Дифракционная решётка разбивает световую волну, падающую на неё на N когерентных волн (N – общее количество целей в решётке). Дифракционная картина является результатом наложения дифракционных картин от всех отдельных щелей.

В направлениях, в которых волны от щелей усиливают друг друга, наблюдаются главные максимумы .

В направлениях, в которых ни одна из щелей не посылает свет (для щелей наблюдаются минимумы) образуются абсолютные минимумы.

В направлениях, где волны от соседних щелей «гасят» друг друга, наблюдается

вторичные минимумы.

Между вторичными минимумами наблюдаются слабые вторичные максимумы .

Зависимость интенсивности I от угла дифракции ϕ для дифракционной решетки имеет вид

− 7 λ

− 5 λ − 4 λ −

4 λ 5 λ

d d λ

− b

Угол ϕ отклонения лучей, соответствующий главному максимуму (светлая полоса) при дифракции света на дифракционной решетке, определяется из условия

d sin ϕ = ± m λ , где m= 0, 1, 2, 3,...,

где d - период дифракционной решетки, m - порядковый номер максимума (порядок спектра).

9. Дифракция на пространственных структурах. Формула Вульфа - Брэгга.

Формула Вульфа - Брэгга описывает дифракцию рентгеновских лучей на

кристаллах с периодическим расположением атомов в трех измерениях

Из (4) следует, что результат сложения двух когерентных световых лучей зависит как от разности хода, так и от длины световой волны. Длина волны в вакууме определяется величиной , гдес =310 8 м/с – скорость света в вакууме, а– частота световых колебаний. Скорость светаvв любой оптически прозрачной среде всегда меньше скорости света в вакууме и отношение
называетсяоптической плотностью среды. Эта величина численно равна абсолютному коэффициенту преломления среды.

Частота световых колебаний определяет цвет световой волны. При переходе из одной среды в другую цвет не меняется. Это значит, что частота световых колебаний во всех средах одна и та же. Но тогда при переходе света, например, из вакуума в среду с коэффициентом преломленияn должна изменяться длина волны
, что можно преобразовать так:

,

где  0 – длина волны в вакууме. То есть при переходе света из вакуума в оптически более плотную среду длина световой волныуменьшается в n раз. На геометрическом пути
в среде с оптической плотностьюn уложится

волн. (5)

Величина
называетсяоптической длиной пути света в веществе:

Оптической длиной пути
света в веществе называется произведение его геометрической длины пути в этой среде на оптическую плотность среды:

.

Другими словами (см. соотношение (5)):

Оптическая длина пути света в веществе численно равна длине пути в вакууме, на которой укладывается то же число световых волн, что и на геометрической длине в веществе.

Т.к. результат интерференции зависит от сдвига фаз между интерферирующими световыми волнами, то и оценивать результат интерференции необходимооптической разностью хода двух лучей

,

которая содержит одно и то же число волн вне зависимости от оптической плотности среды.

2.1.3.Интерференция в тонких пленках

Деление световых пучков на «половинки» и возникновение интерференционной картины возможно и в естественных условиях. Естественным «устройством» для деления световых пучков на «половинки» являются, например тонкие пленки. На рис.5 показана тонкая прозрачная пленка толщиной , на которую под угломпадает пучок параллельных световых лучей (плоская электромагнитная волна). Луч 1 частично отражается от верхней поверхности пленки (луч 1), а частично преломляется внутрь плен-

ки под углом преломления . Преломленный луч частично отражается от нижней поверхности и выходит из пленки параллельно лучу 1(луч 2). Если эти лучи направить на собирающую линзуЛ , то на экране Э (в фокальной плоскости линзы) они будут интерферировать. Результат интерференции будет зависеть отоптической разности хода этих лучей от точки «деления»
до точки встречи
. Из рисунка видно, чтогеометрическая разность хода этих лучей равна разности геом . =АВС–А D .

Скорость света в воздухе почти равна скорости света в вакууме. Поэтому оптическая плотность воздуха может быть принята за единицу. Если оптическая плотность материала пленки n , то оптическая длина пути преломленного луча в пленкеABC n . Кроме того, при отражении луча 1 от оптически более плотной среды фаза волны изменяется на противоположную, то есть теряется (или наоборот – приобретается) полволны. Таким образом, оптическая разность хода этих лучей должна быть записана в виде

опт . = ABC n AD   /  . (6)

Из рисунка видно, что АВС = 2d /cos r , а

AD = AC sin i = 2d tg r sin i .

Если положить оптическую плотность воздуха n в =1, то известный из школьного курса закон Снеллиуса дает для коэффициента преломления (оптической плотности пленки) зависимость


. (6а)

Подставив все это в (6), после преобразований получим следующее соотношение для оптической разности хода интерферирующих лучей:

Т.к. при отражении луча 1 от пленки фаза волны меняется на противоположную, то условия (4) для максимума и минимума интерференции меняются местами:

– условие max

– условие min . (8)

Можно показать, что при прохождении света через тонкую пленку тоже возникает интерференционная картина. В этом случае потери полволны не будет, и выполняются условия (4).

Таким образом, условия max иmin при интерференции лучей, отраженных от тонкой пленки, определяются соотношением (7) между четырьмя параметрами -
Отсюда следует, что:

1) в «сложном» (немонохроматическом) свете пленка будет окрашена тем цветом, длина волны которогоудовлетворяет условиюmax ;

2) меняя наклон лучей (), можно изменять условияmax , делая пленку то темной, то светлой, а при освещении пленки расходящимся пучком световых лучей можно получитьполосы «равного наклона », соответствующие условиюmax по углу падения;

3) если пленка в разных местах имеет разную толщину (), то на ней будут видныполосы равной толщины , на которых выполняются условияmax по толщине;

4) при определенных условиях (условиях min при вертикальном падении лучей на пленку) свет, отраженный от поверхностей пленки, будет гасить друг друга, иотражения от пленки не будет.

Пусть в некоторой точке пространства О волна делится на две когерентные. Одна из них проходит путь S 1 в среде с показателем преломления n 1 , а вторая – путь S 2 в среде с показателем n 2 , после чего волны накладываются в точке Р. Если в данный момент времени t фазы волны в точке О одинаковы и равны j 1 =j 2 =wt , то в точке Р фазы волн будут равны соответственно

где v 1 и v 2 - фазовые скорости в средах. Разность фаз δ в точке Р будет равна

При этом v 1 =c /n 1 , v 2 =c /n 2 . Подставляя эти величины в (2), получим

Поскольку , где l 0 – длина волны света в вакууме, то

Оптической длиной пути L в данной среде называется произведение расстояния S , пройденного светом в среде, на абсолютный показатель преломления среды n :

L = S n .

Таким образом, из (3) следует, что изменение фазы определяется не просто расстоянием S , а оптической длиной пути L в данной среде. Если волна проходит несколько сред, то L=Σn i S i . Если среда является оптически неоднородной (n≠const), то .

Величину δ можно представить в виде:

где L 1 и L 2 – оптические длины пути в соответствующих средах.

Величину, равную разности оптических длин путей двух волн Δ опт = L 2 - L 1

называют оптической разностью хода . Тогда для δ имеем:

Сопоставление оптических длин пути двух интерферирующих волн позволяет предсказать результат их интерференции. В точках, для которых

будут наблюдаться максимумы (оптическая разность хода равна целому числу длин волн в вакууме). Порядок максимума m показывает, сколько длин волн в вакууме составляет оптическая разность хода интерферирующих волн. Если же для точек выполняется условие

Длины воспринимаемых глазом световых волн очень малы (порядка ). Поэтому распространение видимого света можно в первом приближении рассматривать, отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых линий, называемых лучами. В предельном случае, соответствующем законы оптики можно сформулировать на языке геометрии.

В соответствии с этим раздел оптики, в котором пренебрегают конечностью длин волн, называется геометрической оптикой. Другое название этого раздела - лучевая оптика.

Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

Закон прямолинейного распространения утверждает, что в однородной среде свет распространяется прямолинейно. Этот закон является приближенным: при прохождении света через очень малые отверстия наблюдаются отклонения от прямолинейности, тем большие, чем меньше отверстие.

Закон независимости световых лучей утверждает, что луни при пересечении не возмущают друг друга. Пересечения лучей не мешают каждому из них распространяться независимо друг от друга. Этот закон справедлив лишь при не слишком больших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей перестает соблюдаться.

Законы отражения и преломления света сформулированы в § 112 (см. формулы (112.7) и (112.8) и следующий за ними текст).

В основу геометрической оптики может быть положен принцип, установленный французским математиком Ферма в середине XVII столетия. Из этого принципа вытекают законы прямолинейного распространения, отражения и преломления света. В формулировке самого Ферма принцип гласит, что свет распространяется по такому пути, для прохождения которого ему требуется минимальное время.

Для прохождения участка пути (рис.

115.1) свету требуется время где v - скорость света в данной точке среды.

Заменив v через (см. (110.2)), получим, что Следовательно, время , затрачиваемое светом на прохождение пути от точки до точки 2, равно

(115.1)

Имеющая размерность длины величина

называется оптической длиной пути.

В однородной среде оптическая длина пути равна произведению геометрической длины пути s на показатель преломления среды :

Согласно (115.1) и (115.2)

Пропорциональность времени прохождения оптической длине пути L дает возможность сформулировать принцип Ферма следующим, образом: свет распространяется по такому пути, оптическая длина которого минимальна. Точнее, оптическая длина пути должна быть экстремальной, т. е. либо минимальной, либо максимальной, либо стационарной - одинаковой для всех возможных путей. В последнем случае все пути света между двумя точками оказываются таутохронными (требующими для своего прохождения одинакового времени).

Из принципа Ферма вытекает обратимость световых лучей. Действительно, оптический путь, который минимален в случае распространения света из точки 1 в точку 2, окажется минимальным и в случае распространения света в обратном направлении.

Следовательно, луч, пущенный навстречу лучу, проделавшему путь от точки 1 к точке 2, пойдет по тому же пути, но в обратном направлении.

Получим с помощью принципа Ферма законы отражения и преломления света. Пусть свет попадает из точки А в точку В, отразившись от поверхности (рис. 115.2; прямой путь из А в В прегражден непрозрачным экраном Э). Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Геометрическая длина произвольно взятого пути равна (вспомогательная точка А является зеркальным изображением точки А). Из рисунка видно, что наименьшей длиной обладает путь луча, отразившегося в точке О, для которой угол отражения равен углу падения. Заметим, что при удалении точки О от точки О геометрическая длина пути неограниченно возрастает, так что в данном случае имеется только один экстремум - минимум.

Теперь найдем точку, в которой должен преломиться луч, распространяясь от А к В, чтобы оптическая длина пути была экстремальна (рис. 115.3). Для произвольного луча оптическая длина пути равна

Чтобы найти экстремальное значение, продифференцируем L. по х и приравняем производную нулю)

Множители при равны соответственно Таким образом, получается соотношение

выражающее закон преломления (см. формулу (112.10)).

Рассмотрим отражение от внутренней поверхности эллипсоида вращения (рис. 115.4; - фокусы эллипсоида). В соответствии с определением эллипса пути и т. д. одинаковы по длине.

Поэтому все лучи, вышедшие из фокуса и пришедшие после отражения в фокус являются таутохронными. В этом случае оптическая длина пути стационарна. Если заменить поверхность эллипсоида поверхностью ММ, имеющей меньшую кривизну и ориентированной так, что луч, вышедший из точки после отражения от ММ попадает в точку то путь будет минимальным. Для поверхности , имеющей кривизну большую, чем у эллипсоида, путь будет максимальным.

Стационарность оптических путей имеет место также при прохождении лучей через линзу (рис. 115.5). Луч имеет самый короткий путь в воздухе (где показатель преломления практически равен единице) и самый длинный путь в стекле ( Луч имеет более длинный путь в воздухе, но зато более короткий путь в стекле. В итоге оптические длины путей для всех лучей оказываются одинаковыми. Поэтому лучи таутохронны, а оптическая длина пути стационарна.

Рассмотрим волну, распространяющуюся в неоднородной изотропной среде вдоль лучей 1, 2, 3 и т. д. (рис. 115.6). Неоднородность будем считать достаточно малой для того, чтобы на отрезках лучей длины X показатель преломления можно было считать постоянным.